تهیه حسگر گازی مقاومت شیمیایی بر پایه گرافن اکسید عامل‌دار شده برای آشکارسازی 2،4-دی‌نیتروتولوئن

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده علوم پایه، دانشگاه جامع امام حسین(ع)

چکیده

تحقیق و پژوهش در زمینه آشکارسازی مواد منفجره با توجه به افزایش استفاده از این مواد در حملات تروریستی رو به گسترش می باشد. در این مقاله حسگر مقاومت شیمیایی الکترود شانه‌ای مبتنی بر گرافن اکساید عامل‌دار شده توسط 5،5،4،4،3،3،2،2- اکتافلورو6،1-هگزان دی ال ارائه شده است و پاسخ آن‌ به 2،4- دی نیترو تولوئن (DNT) مورد بررسی قرار گرفته است. پاسخ حسگر با افزودن لایه‌ ثانوی پوشش دهنده بر روی حسگر گرافن اکساید عامل‌دار شده افزایش حساسیت و گزینش‌پذیری قابل توجهی را از خود نشان داده است. گستره پاسخ خطی برای DNT ، ppb 918- 8/91 با حد تشخیص ppb 76به دست آمده است. انحراف استاندار نسبی برای 3 بار تکرارپذیری پاسخ حسگر نیز مقدار 09/6 درصد محاسبه شده است.1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

چکیده تصویری

تهیه حسگر گازی مقاومت شیمیایی بر پایه گرافن اکسید عامل‌دار شده برای آشکارسازی   2،4-دی‌نیتروتولوئن

کلیدواژه‌ها


عنوان مقاله [English]

Graphene oxide microsensors for 2,4-Dinitrotoluene detection

نویسندگان [English]

  • mohammad koochoki
  • amin geravand
  • saeed monzavi
imam hossein university
چکیده [English]

Abstract
Research in the field of explosives detection due to the increased use of these materials in terrorist attacks is growing. In this paper, a chemiresistor gas sensor based on Graphene oxide functionalized with 2,2,3,3,4,4,5,5-Octafluoro-1,6-hexanediol is provided and its response to 2,4-Dinitrotoluene is studied. response of the sensor by adding the second coating layer on the functionalized graphene oxide show considerable increase the sensitivity and selectivity of the sensor .Linear response range for DNT, 91.8-918 ppb with a detection limit 76 ppb is obtained. Also the RSD to evaluate the repeatability of sensor for 3 replicate measurements was 6.09%.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1 1 1 1 11 1

کلیدواژه‌ها [English]

  • Graphene oxide
  • microsensors for 2
  • 4-Dinitrotoluene detection
[1] Bielecki, Z., et al. (2012). "Sensors and systems for the detection of explosive devices-an overview." Metrology and Measurement Systems 19(1): 3-28.
[2] Mokalled, L., et al. (2014). "Sensor Review for Trace Detection of Explosives." Int. J. Sci. Eng. Res 5(6): 337-350.
[3] Caygill, J. S., et al. (2012). "Current trends in explosive detection techniques." Talanta 88: 14-29.
[4] Albert, K. J. and D. R. Walt (2000). "High-speed fluorescence detection of explosives-like vapors." Analytical chemistry 72(9): 1947-1955.
[5] Smith, R. G., et al. (2008). "A review of biosensors and biologically-inspired systems for explosives detection." Analyst 133(5): 571-584.
[6] Harper, R. J., et al. (2005). "Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection." Talanta 67(2): 313-327.
[7] Ewing, R. G., et al. (2001). "A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds." Talanta 54(3): 515-529.
[8] Fereja, T. H., et al. (2013). "A recent review on chemiluminescence reaction, principle and application on pharmaceutical analysis." ISRN Spectroscopy 2013.
[9] Lewis, M. L., et al. (2005). "Raman spectrometry of explosives with a no-moving-parts fiber coupled spectrometer: a comparison of excitation wavelength." Vibrational spectroscopy 38(1): 17-28.
 [10] Pan, X., et al. (2006). "Method optimization for quantitative analysis of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) by liquid chromatography-electrospray ionization mass spectrometry." Talanta 70(2): 455-459.
[11] Nimal, A., et al. (2009). "Development of handheld SAW vapor sensors for explosives and CW agents." Sensors and Actuators B: Chemical 135(2): 399-410.
[12] Dobrokhotov, V., et al. (2012). "Thermal and optical activation mechanisms of nanospring-based chemiresistors." Sensors 12(5): 5608-5622.
[13] Wang, F., et al. (2008). "Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents." Journal of the American Chemical Society 130(16): 5392-5393.
[14] Grate, J. W. (2008). "Hydrogen-bond acidic polymers for chemical vapor sensing." Chemical reviews 108(2): 726-745.
[15] Schnorr, J. M., et al. (2013). "Sensory Arrays of Covalently Functionalized Single‐Walled Carbon Nanotubes for Explosive Detection." Advanced Functional Materials 23(42): 5285-5291.
[16] Yuan, W. and G. Shi (2013). "Graphene-based gas sensors." Journal of Materials Chemistry A 1(35): 10078-10091.
[17] Bai, H. and G. Shi (2007). "Gas sensors based on conducting polymers." Sensors 7(3): 267-307.
[18] Wang, D. (2014). Trace Explosive Sensor Devices Based on Semiconductor Nanomaterials, University of Washington.
[19] Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS nano, 2(3), 463-470.
[20] Bai, H., & Shi, G. (2007). Gas sensors based on conducting polymers. Sensors, 7(3), 267-307.
[21] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565.
[22] Boehm, H. P., Clauss, A., Fischer, G. O., & Hofmann, U. (1962). Das adsorptionsverhalten sehr dünner kohlenstoff‐folien. Zeitschrift für anorganische und allgemeine Chemie, 316(3‐4), 119-127.
[23] Bourlinos, A. B., Gournis, D., Petridis, D., Szabó, T., Szeri, A., & Dékány, I. (2003). Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir, 19(15), 6050-6055.
[24] Kotov, N. A., Dékány, I., & Fendler, J. H. (1996). Ultrathin graphite oxide–polyelectrolyte composites prepared by self‐assembly: Transition between conductive and non‐conductive states. Advanced Materials, 8(8), 637-641.
[25] Pham, V. H., Cuong, T. V., Hur, S. H., Oh, E., Kim, E. J., Shin, E. W., & Chung, J. S. (2011). Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. Journal of Materials Chemistry, 21(10), 3371-3377.
[26] Ren, P. G., Yan, D. X., Ji, X., Chen, T., & Li, Z. M. (2010). Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology, 22(5), 055705.
[27]   Ren, P. G., Yan, D. X., Ji, X., Chen, T., & Li, Z. M. (2010). Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology, 22(5), 055705.
[28] Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B., & Weiller, B. H. (2009). Practical chemical sensors from chemically derived graphene. ACS nano, 3(2), 301-306.
 [29] Niu, F., Liu, J. M., Tao, L. M., Wang, W., & Song, W. G. (2013). Nitrogen and silica co-doped graphene nanosheets for NO 2 gas sensing. Journal of Materials Chemistry A, 1(20), 6130-6133.
[30] Chung, M. G., Kim, D. H., Lee, H. M., Kim, T., Choi, J. H., kyun Seo, D., ... & Kim, Y. H. (2012). Highly sensitive NO2 gas sensor based on ozone treated graphene. Sensors and Actuators B: Chemical, 166, 172-176.
 [31] Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z., & Sheehan, P. E. (2008). Reduced graphene oxide molecular sensors. Nano letters, 8(10), 3137-3140.
[32] Su, P. G., & Shieh, H. C. (2014). Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sensors and Actuators B: Chemical, 190, 865-872.