طراحی یک نانوحسگر برای Cu(II) و آسکوربیک اسید بر اساس نانوذرات طلا

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم، صندوق پستی 416، کد پستی 66177-15175، آزمایشگاه کمومتری، دانشگاه کردستان، سنندج، ایران

10.22036/cr.2021.279633.1138

چکیده

در این کار یک نانوحسگر برای اندازه‌گیریCu(II) و آسکوربیک اسید (AA) بر اساس مکانیسم-های ضد-تجمع و تجمع طلا پیشنهاد شده است. در بخش اول، روشی انتخابی برای اندازه‌گیری Cu(II) بر اساس فرآیند ضد-تجمع نانو ذرات طلا توسط نئوکوپرین (NC) پیشنهاد شد. در حضور غلظت ثابتی از NC، Cu(II) با تشکیل یک کمپلکس چهار دندانه با NC موجب کاهش میزان تجمع یافتگی نانو ذرات طلا می‌شود. فرآیند ضد-تجمع نانو ذرات طلا در گستره nM 500-5 از Cu(II) انجام گرفت. مقدار حد تشخیص برابر با nM 1 برای Cu(II) بدست آمد. این مقدار از حداکثر مقادیر مجاز Cu(II) در آب‌های آشامیدنی پایین‌تر است. نتایج آشکار نمود که روش پیشنهادی انتخاب‌پذیری مناسبی برای Cu(II) در مقایسه با سایر یون‌ برای کاهش تجمع نانو ذرات طلا نشان می‌دهد. روش پیشنهادی برای اندازه‌گیری Cu(II) در نمونه‌های آب آشامیدنی به کار گرفته شد. در بخش دوم، از فرآیند ضد-تجمعی نانو ذرات طلا برای اندازه‌گیری AA استفاده شد. AA به‌ عنوان یک لیگاند رقابتی با NC برای Cu(II) وارد فرآیند ضد-تجمع نانو ذرات طلا می‌شود و با خارج کردن Cu(II) از کمپلکس NC-Cu(II)، می‌تواند با آن وارد واکنش شود. طی این واکنش، AA اکسید شده و Cu(II) به Cu(I) تبدیل خواهد شد. آزاد شدن NC از کمپلکس باعث تجمع دوباره نانو ذرات طلا می‌شود. فرآیند تجمع در گستره nM 75-9 از AA صورت گرفت. نتیجه این رقابت موجب اندازه‌گیری AA با انتخاب پذیری بالا و یک حد تشخیص nM 8/1 شد .این روش برای اندازه‌گیری AA در نمونه قرص ویتامین C به کار گرفته شد.

چکیده تصویری

طراحی یک نانوحسگر برای Cu(II) و آسکوربیک اسید بر اساس نانوذرات طلا

کلیدواژه‌ها


عنوان مقاله [English]

Design of a nanosensor for Cu(II) and ascorbic acid based on gold nanoparticles

نویسندگان [English]

  • Fatemeh Ghadami
  • Zolaikha Rasouli
  • Raouf Ghavami Zervan
Department of Chemistry
چکیده [English]

In this work, a nanosensor for Cu(II) and ascorbic acid (AA) based on anti-aggregation and aggregation mechanisms of gold is proposed. In the first part, a selective method for Cu2+ based on the anti-aggregation process of gold nanoparticles by neocuproine (NC) is proposed. In the presence of a constant concentration of NC, Cu(II) decreases the aggregation of gold nanoparticles by forming a four-dentate complex with NC. The anti-aggregation process of gold nanoparticles is performed in the range of 5-500 nM of Cu(II). A value of detection limit of 1 nM is estimated for Cu(II). This is lower than the allowable levels of Cu(II) in drinking water. The results revealed that the proposed method shows good selectivity for Cu(II) compared to other ions to decrease the aggregation of gold nanoparticles. The proposed method for Cu(II) is employed in drinking water samples. In the second part, the anti-aggregation process of gold nanoparticles is used for AA. AA as a competitive ligand with NC for Cu(II) enters the anti-aggregation process of gold nanoparticles and can react with it by removing Cu(II) from the NC- Cu(II) complex. During this, AA is oxidized and Cu(II) is converted to Cu(I). Rereleasing of NC from the complex causes re-aggregation of nanoparticles. The aggregation is performed in the range of 9-75 nM of AA. The result of this competition was to measure AA with high selectivity and a detection limit of 1.8 nM. This method is used to measure AA in a sample of vitamin C tablet.

کلیدواژه‌ها [English]

  • Neocuproine
  • Aggregation and anti-aggregation
  • Gold nanoparticles
  • Cu(II)
  • Ascorbic acid
  1. G. Aragay, J. Pons, A. Merkoçi, Chem. Rev. 111 (2011) 3433.
  2. J.A. Buledi, S. Amin, S.L. Haider, M.I. Bhanger, A.R. Solangi, Environ. Sci. Pollut. Res. 24 (2020) 1.
  3. A.A. Ghoniem, N.El-A. El-Naggar, W.I.A. Saber, M.S. El-Hersh, A.Y. El-khateeb, Sci. Rep. 10 (2020) 9491.
  4. F. Wanga, X. Lua, X-y. Li, J. Hazard. Mater. 308 (2016) 75.
  5. D.J. Fitzgerald, Am. J. Clin. Nutr. 67(1998)1098S–1102S.
  6. G. Grass, C. Rensing, M. Solioz, Appl. Environ. Microbiol. 5 (2011) 1541.
  7. M.A. Deshmukh, H.K. Patil, G.A. Bodkhe, M. Yasuzaw, P. Koinkar, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius, Sens. Actuators B: Chem. 1 (2018) 331.
  8. Z. Guo, D-d. Li, X.k. Luo, Y-h. Li, Q-n. Zhao, M-m. Li, Y-t. Zhao, T-s. Sun, M. J. Colloid Interface Sci. 490 (2017) 11.
  9. S.C. Wilschefski, M.R. Baxter, Clin. Biochem. Rev. 40 (2019) 115.
  10. M. Ghisi, E.S. Chaves, D.P.C. Quadros, E.M. Marques, A.J. Curtius, A.L.B. Marques, Microchem. J. 98 (2011) 62.
  11. D. Vilela, A. Escarpa, Anal. Chim. Acta 751 (2012) 24.
  12. G.M. Fernandes, D.N. Barreto, R.S. Lamarca, P.C.F. Lima Gomes, S. João Flávio da Petruci, A.D. Batista, Anal. Chim. Acta 1135 (2020) 187.
  13. Duraisamy Udhayakumari, Sanay Naha, Sivan Velmathi, Colorimetric and fluorescent chemosensors for Cu2+. A comprehensive review from the years 2013-15, Anal. Methods 9 (2017) 552.
  14. V.S.A. Piriya, P. Joseph, S.G.G.K. Daniel, S. Lakshmananc, T. Kinoshita, S. Muthusamy, Mater. Sci. Eng. C 78 (2017) 1231.
  15. M. Lv, X. Zhang, Y. Zhang, RSC Adv. 124 (2015) 102311.
  16. D.V. María, C. González, A. Escarpa, Anal. Chim. Acta 751 (2012) 24.
  17. P.C. Huang, N.J-F. Li, F-Y. Wu, Sens. Actuators B: Chem. 255 (2018) 2779.
  18. M. Iarossi, C. Schiattarella, I. Rea, L.D. Stefano, R. Fittipaldi, A. Vecchione, R. Velotta, B.D. Ventura, ACS Omega 30 (2018) 3805.
  19. E. Priyadarshini, N. Pradhan, Sens. Actuators B: Chem. 238 (2017) 888.
  20. M. Li, H. Gou, I. Al-Ogaidi, N. Wu, ACS Sustainable Chem. Eng. 7 (2013) 713.
  21. H. Wei, S.M.H. Abtahi, P.J. Vikesland, Environ. Sci.: Nano 2 (2015) 120.
  22. L. Li, B.D. Li, Food Chem. 122 (2010) 895.
  23. G. Grass, C. Rensing, M. Solioz, Appl. Environ. Microbiol. 5 (2011) 1541.
  24. M.P. Bradshaw, C. Barril, A.C. Clark, P.D. Prenzler, G.R. Scollary, Crit. Rev. Food Sci. Nutr. 51 (2011) 479.
  25. D. Njusa, P.M. Kelleya, Y-J. Tu, Y-J., H.B. Schlegel, Free Radica. Bio. Med. 7 (2020) 37.
  26. A.M. Pisoschi, A.F. Danet, S. Kalinowski, J. Autom. Methods Manag. Chem. 1463-9246 (2008) 937651.
  27. N.V. Bhagavan, Medical Biochemistry (4th edn.) Elsevier, Amsterdam, The Netherlands (2001).
  28. E.M. Mystkowski, Biochem. J. 36 (1942) 494.
  29. X. Wang, L. Chen, L. Chen, Microchim. Acta, 181 (2014) 105.
  30. M.R. Hormozi-nezhad, S. Abbasi-moayed, Talanta 129 (2014) 227.
  31. L. Zhang, Y. Xing, C. Liu, X. Zhou, H. Shi, Sens. Actuator B: Chem. 215 (2015) 561.
  32. Q. Gao, L. Ji, Q. Wang, K. Yin, J. Li, L. Chen, Anal. Methods 9 (2017) 5094.
  33. Z. Rasouli, R. Ghavami, Spectrochim. Acta A Mol. Biomol. Spectrosc. 191 (2018) 336.