The investigation of interaction between 5- Fluorouracil drug and pristine, B&P doped Aluminum nitride nano cage (Al12N12): By DFT method

Document Type : Original Article

Authors

Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran

Abstract

In this project, by using density functional theory the adsorption of 5- Fluorouracil drug on the surface of pristine and B and P doped of Aluminum nitride nano cage (Al12N12) is investigated at different states. According to optimized structures, the quantum and thermodynamic parameters, molecular electrostatic potential (MEP), natural bonding orbitals (NBO) and quantum theory of atom in molecule (QTAIM) for all considered models are calculated. The results of quantum parameter reveal that the gap energy of 5- Fluorouracil drug and aluminum nitride nano cage complex decrease significantly from original state and so the conductivity, reactivity, and optical properties of system increase. These properties confirm that the doped aluminum nitride nano cage is a good candidate to making sensor for 5- Fluorouracil drug. Comparison results of thermodynamic and adsorption energy show that the adsorption energy of 5- Fluorouracil on the surface nano cage is negative and the adsorption process is exothermic and favorable. The AIM and NBO results display that the adsorption of 5- Fluorouracil drug on the surface of nano cage is electrostatic and this property is favorable for using drug delivery in biological system. On the other, hand the calculated results indicate that the B&P doped aluminum nitride nano cage can be a good candidate to making a delivery and sensor for 5- Fluorouracil drug.

Graphical Abstract

The investigation of interaction between 5- Fluorouracil drug and pristine, B&P doped Aluminum nitride nano cage (Al12N12): By DFT method

Keywords


[1]  E. Shakerzadeh,  N.  Barazesh, S. Z.  Talebi, S. Z,  Superlat. Microstr. 76, 264 (2014).
[2]  A. S. Rad, K.  Ayub,  J. Alloys . Comp. 672, 161 (2016).
[3]  F. A.  Ponce, D. P.  Bour, Nature, 386, 351 (1997).
[4]  F. J. Moura, R. J. Munz, J. Am. Cer. Soc. 80(9), 2425(1997).
[5]  R. Siegel, J. Ma, Z.  Zou, A. Jemal, J. Clinicians, 64(1), 9 (2014).
[6]  E. Shakerzadeh, N. Barazesh, S. Zargar Talebi, Superlat Microstr 76, 264 (2014).
[7]  P. Fallahi, H. Jouypazadeh, H. Farrokhpour, J. Mol. Liq., 260, 138 (2018).
[8]  M. D.  Esrafili, R. Nurazar, Superlat. Microstr, 75, 17 (2014).
[9]  H. Jouypazadeh, H. Farrokhpour, J. Mol. Str., 1164, 227 (2018).
[10]   F. Azimi, E. Tazikeh-Lemeski, Physica E., 103, 35 (2018).
[11]  M. Solimannejad,S. Kamalinahad, E. Shakerzadeh, Phys.  Lett.  A, 380, 2854 (2016).
[12]  A. Shokuhi Rad, K. Ayub, Mater. Chem.  Phys., 194, 337 (2017).
[13]  M. Rezaei-Sameti, F. Saki, Phys.Chem. Res. 3,265 (2015).
[14]  M. Rezaei‒Sameti, N.  Javadi Jukar, J. Nanostruct. Chem. 7, 293(2017).
[15]  M. Rezaei‑Sameti, F.  Moradi,  J. Inc. Phenom. Macrocyc. Chem. 88, 209 (2017).
[16]  M. Rezaei−Sameti, M. Bagheri,  J. Phys. Theo. Chem. 14, 63 (2017).
[17]  M. Rezaei‒Sameti, H. Behbahani, Phys. Chem. Res. 6, 31 (2018).
[18]  G. Job, F. Herrmann, European  J. phys. 27(2), 353 (2006).
[19]  K. L. Carder, R.G. Steward, G. R.  Harvey, P. B. Ortner, Limnol. Oceanogra. 34(1), 68 (1989).
[20]  R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105(26), 7512(1983).
[21]  A. A. Peyghan, S. Yourdkhani, Struct. Chem. 25(2), 419 (2014).
[22]  N. Ahmadaghaei, M.  Noei, M. J. Iranian Chem. Soc. 11(3), 725 (2014).
[23]  A. Soltani, A. A.  Peyghan, Z.  Bagheri, Physica E.  48, 176(2013).
[24]  M. T. Baei, A. A.  Peyghan, M.  Moghimi, Monats. Chem. Month. 143(11), 1463 (2012).
[25]  P. G. Parr, L. V. Szentpaly, S.  Liu,  J. Am. Chem. Soc. 121(9), 1922 (1999).
[26]   J. S. Murray, K. Sen, Molecular electrostatic potentials: concepts and applications, Elsevier Science, Netherlands,(1996).
[27]   R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, U. K., (1990).