Investigating Effect of Different Hydrothermal Conditions on the Size and Form of Hydroxyapatite Nanoparticles

Document Type : Original Article

Authors

1 PhD candidate

2 professor at Radiation Application Research School

3 aeoi

4 Assistant Professor

5 expert

Abstract

So far, various methods have been proposed for the synthesis of hydroxyapatite nanoparticles as the main ingredient in bone and enamel. In each of these methods, by varying initial conditions of synthesis, samples of size and shape, and the ratio of length to diameter can be achieved. In this study, pure hydroxypropyl nanoparticles were prepared using calcium nitrate precursors (Ca (NO3) 2-4H2O) and diammonium hydrogen phosphate ((NH4) 2HPO4) by hydrothermal method. The purpose of this study was to investigate the effects of changes in reaction conditions and the synthesis of this material on the size and shape of the particles. X-ray diffraction (XRD) and scanning electron microscopy (SEM) nanoparticles were investigated. The results of the experiment indicate that the concentration of the raw materials, the method and temperature of calcining, the speed of the addition of materials, the use or non-use of surfactants can have different effects on the size and shape of the hydroxyapatite particles.

Graphical Abstract

Investigating Effect of Different Hydrothermal Conditions on the Size and Form of Hydroxyapatite Nanoparticles

Keywords


1) Shafaei, M., F. Ziaie, and N. Hajiloo, Kerntechnik, 81 (2016) 651.
2.          شفائی, م., تأثیر عملیات پخت بر پاسخ ترمولومینسانس هیدروکسی اپاتیت نانوساختار فراهم شده به روش هیدرولیز
از دیدگاه دزیمتری. مجله سنجش و ایمنی پرتو،, 1393.
3) M.A.V. de Alencar, The TL and OSL Study of Hydroxyapatites for Dosimetric Applications.
4) M. Shafaei, et al., Luminescence 31 (2016) 223.
5) A. Costescu, et al., Digest J. Nanomater. Biostruct., 5 (2010) 989.
6) A. Noori, F. Ziaie, M. Shafaei, J. Nanomed. Nanotechnol. 7: 389.
7) M. Mohammadi, et al., Radiation Phys. Chem. 130 (2017) 229.
8) H. Li, et al., Crystal Growth Design 17 (2017) 2809.
9) A. Khanafari, T. Akbari, M.R. Sohrabi, Nanomed. J. 1 (201) 276.
10) Nguyen, N.K., et al., J. Biomater. Appl. 28 (2013) 49.
11) T. Ma, Z. Xia, L. Liao, Appl. Surf. Sci. 257 (2011) 4384.
12) J. Coelho, et al., J. Mater. Sci.: Mater. Med. 21 (2010) 2543.
13) Y. Zhang, J. Lu, J. Nanopart. Res. 9 (2007) 589.
14) E. Bouyer, F. M. Gitzhofer, Boulos, J. Mater. Sci.: Mater. Med. 11 (2000) 523.
15) J. Liu, et al., Ceramics International 29 (2003) 629. 16) T.T.T. Pham, et al., Adv. Nat. Sci.: Nanosci.
Nanotechnol. 4 (2013) 035014.
17) N. Al-Qasas, S. Rohani, Separation Sci. Technol. 40 (2005) 3187.
18) Y. Zhang, Y. Dong, Synth. React. Inorg. Metal- Org. Nano-Metal Chem. 45 (2015) 411.
19) Tahriri, M., M. Solati-Hashjin, H. Eslami, Iran. J. Pharm. Sci. 4 (2008) 127. 
20) M. Komath, H. Varma, Bull. Mater. Sci. (2003) 415.
F. Nagata, et al., J. Ceram. Soc. Jpn. 121 (2013) 797.