Calculation of Thermodynamic properties of R236ea, R245ca and R245fa

Document Type : Original Article

Authors

1 chemistry department, College of Science,azad university,marvdasht.Iran

2 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashahd

Abstract

In this paper, we have used a simple equation of state to predict the volumetric and thermodynamic properties of liquid refrigerants. The thermodynamic properties such as density ρ, isobaric expansion coefficient α, and isothermal compressibility κ, for some refrigerants e.g. R236ea, R245ca, and R245fa, based on GMA EOS have been calculated and a wide comparison with experimental data was made. This article is devoted to the theoretical study of some thermodynamic properties of the liquid refrigerants over the temperature range between 240K and 440K and pressures up to 580 atm to indicate that the GMA EoS has an acceptable performance for property predictions of pure liquid refrigerants. Our calculated results on the density, isobaric expansion coefficient and isothermal compressibility for the liquid refrigerants are in good agreement with the experimental data. The accuracy of the equation of state is determined by a statistical parameter; Absolute Average Deviation ( AAD). The AAD values show that the GMA equation of state can predict the thermodynamic properties of the refrigerants in the range of temperature and pressure with high precision.

Graphical Abstract

Calculation of Thermodynamic properties of  R236ea, R245ca and R245fa

Keywords


[1] L. Weber and A. R. H. Goodwin, J.Chemical & Engineering Data, 38,254 (1993). 
[2] D. R. Defibaugh, E. Carrillo-Nava, J. J. Hurly, M. R. Moldover, J. W. Schmidt, and   L. A. Weber, J.  Chemical & Engineering Data, 42, 488 (1997).
[3] H. A. Duarte-Garza, C. Hwang, S. A. Kellerman, R. C. Miller, K. R. Hall, and J. C. Holste, J. Chemical & Engineering Data, 42, 497 (1997).
[4] T. Sotani, and H. Kubota, Fluid Phase Equilib. 161, 325 (1999).                                                        [5] E. W. Lemmon, and R. T. Jacobsen, J. Physical and Chemical Reference Data, 29, 521 (2000).
[6] J.V. Widiatmo, and K.Watanabe,  Fluid Phase Equilib. 183, 31 (2001).
[7] G. D. Nicola, J.Chemical & Engineering Data, 48, 1332 (2003).
[8] J. Li, R. Tillner-Roth, H. Sato, and K.Watanabe, Int. J.Thermophysics, 20, 1639 (1999).
[9] G. Giuliani, S. Kumar, P. Zazzini, and F. Polonara, J.Chemical & Engineering Data, 40, 903 (1996).
[10]  I. M. Astina, and H. Sato, European Conference on Thermophysical properties proceeding, London, England, pp 1-8 (2002).
[11] Z. Sharafi and F. Moosavi, Physics and Chemistry of Liquids, 51, 349 (2013).
[12] E. K. Goharshadi, A. Morsali, and M. Abbaspour, Fluid Phase Equilib, 230, 170 (2005).
[13] E. K. Goharshadi, and F. Moosavi, Fluid Phase Equilib, 238, 112(2005).
[14] E. K. Goharshadi, and M. Moosavi, Ind. Eng. Chem. Res, 44, 6973(2005).
[15] E. K. Goharshadi, A.R. Berenji, J. Nucl. Mater, 348, 40 (2006).
[16] E. K. Goharshadi, and M. Moosavi, Thermochimica. Acta, 447, 64 (2006).
[17] E. K. Goharshadi, and F. Moosavi, Int. J. Refrig, 30, 377 (2007).
[18] E. K. Goharshadi, and M. Moosavi, Fluid Phase Equilib, 245, 109 (2006).
[19] A.R. Berenji, and E. K. Goharshadi, Polymer, 47, 4726 (2006).
[20] M. Moosavi, Ind. Eng. Chem. Res, 49, 6662 (2010).
[21] X. Rui, J. Pan, and Y. Wang, Fluid Phase Equilib, 341, 78 (2013).
[22] S. Liu, B. Dai, W. Zhang, and X. Li, Energy Procedia, 104, 419 ( 2016 ).
[23] E.W. Lemmon, M.O. McLinden, and M.L. Huber, NIST Standard Reference Database 23 (REFPROP Version 7.0), National Institute of Standards and echnology Boulder, Colorado 80305, 2002.