Quantum study on interaction between Sitagliptin and Pioglitazone and single-walled carbon nanotubes (7, 7)

Document Type : Original Article

Authors

Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran

Abstract

Quantum calculation were carried out to investigate interaction between sitagliptin and piogliazone as diabetic drugs with single-walled carbon nanotubes (7, 7). In all calculations, the generalized gradient approximation (GGA) with double numerical (DND) was used. The reactivity regions and sites of nuleophilic and electrophilic these compounds are investigated using fukui functions basis on the Mulliken population analysis (MPA). The adsoption energies of sitagliptin and piogliazone on single-walled carbon nanotubes (7, 7) were calculated. Sitagliptin and piogliazone drugs were located inside SWCNT. The quantum molecular descriptors (ionization potential (I), vertical electron affinity (A), hardness (η), chemical potential (μ), softness (S), electrophilicity (ω) and electronegativity (χ)) of pristine SWCNT and SWCNT-drug complex are calculated. The negative values of adsorption energies indicate such interactions can be conceived as physicosorption. Data display that the adsorptions are exothermic and spontaneous. The obtained results show that the SWCNT (7, 7) can be reliable to perform as a carrier for sitagliptin and piogliazone molecules in drug delivery.

Keywords


2) G. L. Plosker, Drugs 74, 223 (2014).
3) L. J. Scott, Drugs 77, 209 (2017).
4) S. Wittayalertpanya, S. Chompootaweep, N. Thaworn, J. Med. Assoc. Thai. 89, 2116 (2006).
5) R. Singh, G. Sumana, R. Verma, S. Sood, K. Sood, R.K. Gupta, B. Malhotra, Thin Solid Films, 519, 1135 (2010).
6) B. S. Wong, S. L. Yoong, A. Jagusiak, T. Panczyk, H. K. Ho, W. H. Ang, G. Pastorin, Adv. Drug Deliv. Rev. 65, 1964 (2013).
7) J. J. Davis, M. L. Green, H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Sloan, A. V. Xavier, S. C. Tsang, Inorg. Chim. Acta 272, 261 (1998).
8) A. Bianco, M. Prato, Adv. Mater. 15, 1765 (2003).
9) Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Cancer Res. 68, 6652 (2008).
10) G. Pastorin, W. Wu, S. Wieckowski, J. P. Briand, K. Kostarelos, M. Prato, A. Bianco , Chem, Commun. 11, 1182 (2006).
11) M. Kia, M. Golzar, K. Mahjoub, A. Soltani, Superlattices Microstruct. 62, 251 (2013).
12) N. Saikia, R. C. Deka, Comput. Theor. Chem. 964, 257 (2011).
13) M. Gallo, A. Favila, D. Glossman-Mitnik, Chem.  Phys. Lett. 447, 105 (2007).
14) E. C. Anota, G. H. Cocoletzi, Physica E Low Dimens. Syst. Nanostruct. 56, 134 (2014).
15) M. S.  Hoseininezhad-Namin, P. Pargolghasemi, S. Alimohammadib, A. Shokuhi Rad, L.Taqavi, Physica E Low Dimens. Syst .Nanostruct.90, 204 (2017).
16) X. Lu, F. Tian, X. Xu, N. Wang, Q. Zhang,J. Am. Chem. Soc. 125, 10459 (2003)
17) B. Delley, J. Chem. Phys. 113, 7756 (2000).
18) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rew. Lett. 77, 3865 (1996).
19) H. Akbarzadeh, M. Abbaspour, S. Salemi, New J. Chem. 40, 310 (2016).
20) F. Tournus1, J.-C. Charlier, Phys. Rev. B 71, 165421 (2005).
21) Y. Wang, Z. Xu, RSC Adv. 6, 314 (2016).