Study of adsorption of cationic Cu2+ on starch-poly (Am-co-AA)/GO bio-nanocomposite hydrogels

Document Type : Original Article

Authors

chemistry department- facultu of science baneh kordestan iran

Abstract

This project studies the absorption and removal of copper cations from aqueous solutions by starch-poly (acry-lamide-co-acrylic acid) / graphene oxide hydrogel bio-nanocomposites. The bio-nanocomposite hydrogel was obtained from a radical polymerization of the starch biopolymer with vinyl acrylamide (Am) and acrylic acid (AA) monomers with N,N-methylenebisacrylamide (MBA) in the presence of graphene oxide nanosheets (GO). The bio-nanocomposites were investigated by XRD, FT-IR, FE-SEM, TEM and TGA techniques. The effect of pH on adsorption, effects of time on adsorption, the initial concentration of copper ions and effect of temperature on the adsorption process on copper ions were investigated. The results which obtained from the experiments on the removal and absorption of copper ions were shown the maximum adsorption at pH =5 / 5, the adsorption increased by increasing the time, the equilibrium adsorption process flowed by Langmuir isotherm model and according to thermodynamic parameters, the adsorption of Cu2+ on bio-nanocomposite hydrogels occurred endothermic process and spontaneously, respectively. Also, the amount of adsorption increases proportionally to the amount of GO. Additionally, because of the enthalpy of absorption between 20-80 (KJ / mol), as a result, the process of removal is an electrostatic process

Keywords


1) D.Q. Melo, V.O. Neto, J.T. Oliveira, A.L. Barros, E.C. Gomes, G.S. Raulino, E. Longuinotti, R.F.                  Nascimento, J.Chem. Eng. Data. 58, 798 (2013)
2) Fu, F.; Wang, Q. J. Environ. Manage. 92, 407 (2011)
3) G.R. Mahdavinia, S. Hasanpour, L. Behrouzi, H. Sheykhloie, Starch/Stärke 68, 188 (2016)
4) G.R. Mahdavinia, E. Shokri, Turk. J. Chem. 41,135 (2017)
5) H. Hosseinzadeh, S. Ramin, Int. J. Biol. Macromol. 106,101 (2018)
6) B. Sancey, G. Trunfio, J. Charles, J.-F. Minary, S. Gavoille, P.-M. Badot, G. Crini, J. Environ. Manage.           92,765 (2011)
7) A.V. Reis, M.R. Guilherme, T.A. Moia, L.H. Mattoso, E.C. Muniz, E.B. Tambourgi, J. Polym. Sci. A. 46,        2567 (2008)
8) M. Rinaudo, Prog. Poly. Sci. 31,603 (2006)
9) E. Abdel-Halim, S.S. Al-Deyab, React. Funct. Polym. 75,1 (2014)
10) P.R. Chang, P. Zheng, B. Liu, D.P. Anderson, J. Yu, X. Ma, J. Hazard. Mater. 186, 2144 (2011)
11) S. Wang, C. Zhang, Q. Chang, J. Exp. Nanosci. 12, 270 (2017)
12) G. Güçlü, S. Keleş, K. Güçlü, Polym. Plast. Technol. Eng. 45, 55 (2006)
13) G. Güçlü, E. Al, S. Emik, T.B. İyim, S. Özgümüş, M. Özyürek, Polym. Bull. 65,333 (2010)
14) L. Liu, B. Zhang, Y. Zhang, Y. He, L. Huang, S. Tan, X. Cai, J. Chem. Eng. Data. 60, 1270 (2015)
15) M. Yadav, S. Ahmad, Int. J. Biol. Macromol. 79, 923 (2015)
16) G. He, W. Ke, X. Chen, Y. Kong, H. Zheng, Y. Yin, W. Cai, React. Funct. Polym. 111, 14 (2017)
17) C. Nakason, T. Wohmang, A. Kaesaman, S. Kiatkamjornwong, Carb. Polym. 81,348 (2010)
18) H.A. El‐Mohdy, E.S.A. Hegazy, H. Abd El‐Rehim, J. Macromol. Sci. A. 43, 1051 (2006)
19) G.R. Mahdavinia, H. Etemadi, F. Soleymani, Carbohyd. Polym. 128, 112 (2015)
20) G.R. Mahdavinia, A. Massoudi, A. Baghban, E. Shokri, J. Environ. Chem. Eng. 21578 (2014)
21) S. Wijeratne, M.L. Bruening, G.L. Baker, Langmuir. 29, 12720 (2013)
22) K. Zargoosh, H. Abedini, A. Abdolmaleki, M.R. Molavian, Ind. Eng. Chem. Res. 52, 14944 (2013)
23) H.S.S. Sadat, M. Esmhosseini, S. Khezri, T.F. Ghanbari, A. Khosravi, J. Appl. Chem. 11, 41 (2017)
24) E.S. Dragan, D.F. Apopei Loghin, A.I. Cocarta, ACS Appl. Mater. Interfaces. 6, 16577 (2014)
25) S.J. Wu, T.H. Liou, C.H. Yeh, F.L. Mi, T.K. Lin, J. Appl. Polym. Sci. 127, 4573 (2013)
26) H. Tang, W. Zhou, L. Zhang, J. Hazard. Mater. 209, 218 (2012)
27) U. Iriarte-Velasco, N. Chimeno-Alanís, M. Gonzalez-Marcos, J.I. Álvarez-Uriarte, J. Chem. Eng. Data.        56, 2100 (2011)