Synthesis and Characterization of New Aryl Cycloplatinated(II) Complexes Bearing 2-Phenylpyrimidine Ligand: Theoretical and Molecular Docking Investigations

Document Type : Original Article

Authors

1 a. Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.

2 444 Prof. Yousef Sobouti Blvd.-Institute for Advanced Studies in Basic Sciences (IASBS)- Zanjan 4513766731-Iran

10.22036/cr.2021.279226.1137

Abstract

The reaction of complex cis-[Pt(p-MeC6H4)2(SMe2)2], A, with one equivalent of 2-phenylpyrimidine ligand (Phpym) in acetone solvent at reflux condition gave the cycloplatinated complex [Pt(Phpym)(p-MeC6H4)(SMe2)], 1. This complex was characterized by means of NMR and HR ESI-MS(+). The absorption spectrum of this complex was investigated with UV-vis spectroscopy. In order to have a better structural vision for complex 1, its structure was optimized by density functional theory (DFT) method. The molecular docking evaluation was carried out on complex 1 and it displayed the best binding mode, the orientation and specific binding site of the complex to DNA. The substitution of labile SMe2 ligand in the complex 1 with an equivalent of triphenylphosphine (PPh3) ligand to produce complex [Pt(Phpym)(p-MeC6H4)(PPh3)], 2. The integrity of complex 2 was determined by NMR spectroscopy. Also, the computational and molecular docking details of the complex 1 was compared with its analogues complex [Pt(ppy)(p-MeC6H4)(SMe2)], 3, in which ppy = 2-phenylpyridine.

Graphical Abstract

Synthesis and Characterization of New Aryl Cycloplatinated(II) Complexes Bearing 2-Phenylpyrimidine Ligand: Theoretical and Molecular Docking Investigations

Keywords


1 M. Albrecht, Chem. Rev., 110: 576 (2010).
2 Y. Chi, P. T. Chou, Chem. Soc. Rev., 39: 638 (2010).
3 I. Omae, Cyclometalation Reactions: Five-Membered Ring Products as Universal Reagents, Springer, Japan (2014).
4 G. Millán, N. Giménez, R. Lara, J. R. Berenguer, M. T. Moreno, E. Lalinde, E. Alfaro-Arnedo, I. P. López, S. Piñeiro-Hermida, J. G. Pichel, Inorg. Chem., 58: 1657 (2019).
5 T. Yagyu, J. I. Ohashi, M. Maeda, Organometallics, 26: 2383 (2007).
6 H. R. Shahsavari, S. Paziresh, R. Babadi Aghakhanpour, S. Chamyani, Inorg. Chem. Res., 4: 225 (2020).
7 S. Paziresh, R. Babadi Aghakhanpour, A. R. Esmaeilbeig, J. Organomet. Chem., 803: 73 (2016).
8 A. Abedi, V. Amani, N. Safari, S. N. Ostad, B. Notash, J. Organomet. Chem., 799-800: 30 (2015).
9 J. Zhao, F. Dang, Z. Feng, B. Liu, X. Yang, Y. Wu, G. Zhou, Z. Wu, W.-Y. Wong, Chem. Commun., 53: 7581 (2017).
10 X.-F. Ma, J.-C. Xia, Z.-P. Yan, X.-F. Luo, Z.-G. Wu, Y.-X. Zheng, W.-W. Zhang, J. Mater. Chem. C, 7: 2570 (2019).
11 A. Nakagawa, Y. Hisamatsu, S. Moromizato, M. Kohno, S. Aoki, Inorg. Chem., 53: 409 (2014).
12 H. R. Shahsavari, R. Babadi Aghakhanpour, A. Biglari, M. Niazi, P. Mastrorilli, S. Todisco, V. Gallo, E. Lalinde, M. T. Moreno, N. Giménez, M. R. Halvagar, Organometallics, 39: 417 (2020).
13 S. M. Nabavizadeh, H. R. Shahsavari, M. Namdar, M. Rashidi, J. Organomet. Chem., 696: 3564 (2011).
14 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Inc., Wallingford, CT, (2016).
15 Chemissian v4.2, 2014, http://www.chemissian.com.
16 M. Fereidoonnezhad, M. Niazi, M. Shahmohammadi Beni, S. Mohammadi, Z. Faghih, Z. Faghih, H. R. Shahsavari, ChemMedChem, 12: 456 (2017).
17 M. Drev, U. Grošelj, B. Ledinek, F. Perdih, J. Svete, B. Štefane, F. Požgan, Org. Lett., 20: 5268 (2018).
18 H. R. Shahsavari, R. B. Aghakhanpour, M. Babaghasabha, M. Golbon Haghighi, S. M. Nabavizadeh, B. Notash, New J. Chem., 41: 3798 (2017).
19 R. G. Kenny, C. J. Marmion, Chem. Rev., 119: 1058 (2019).
20 T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Chem. Rev., 116: 3436 (2016).
21 G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem., 30: 2785 (2009).