Study of the interaction of functionalized single-walled nanotubes (7, 7) as drug carriers with anticancer compounds of the Pyridobenzimidazole

Document Type : Original Article

Authors

1 Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran

2 Department of Biology, Payame Noor University, 19395-3697

3 Department of Biology,, Payame Noor University

10.22036/cr.2021.259893.1128

Abstract

The unique physical chemical properties and low toxicity of single walled carbon nanotubes (SWNT) has caused that which have the most effective role in drug delivery in cancer patients. These carriers can reduce the side effects of chemotheraphy in patients and transfer a greater priportion of the drug to target cells. Also , they can minimizes the dose of the drug. The quantum calculations were performed to investigate the interaction of pyridobenzimidazole compounds as anticancer agents with functionalized single-walled carbon nanotubes (7, 7). All calculations have been performed using the DMol3 code, which is based on density functional theory (DFT). The density functional theory was considered within the generalized gradient approximation (GGA) with the double numeric polarized (DND) basis sets. The reactive regions and the electrophilic and nucleophilic attack sites of Pyridobenzimidazole (PBI) derivatives as anticancer agents were investigated using Fukui functions based on mulliken charge analysis. The adsorption energy of the agents with functionalized carbon nanotubes was calculated. Pyridobenzimidazole (PBI) derivatives as anticancer agents were covalently placed on the functionalized carbon nanotubes.
Adsorption energies are found to be negative that negative values of the adsorption energies from thermodynamic consideration denote that the process is exothermic. Also, interaction between PBI derivatives and COOH-SWCNT (7, 7) is strong van der waals and adsorption could be chemical. Based on quantum computations, COOH-SWCNT (7, 7) can be used as carrier in the delivery of Pyrido benzimidazole derivative anticancer compounds

Graphical Abstract

Study of the interaction of functionalized single-walled nanotubes (7, 7) as drug carriers with anticancer compounds of the Pyridobenzimidazole

Keywords


1 D.  Fujisawa, H.Inoguchi, H.Shimoda, K.Yoshiuchi, S. Inoue, et al.  Psychooncology25, 491(2016).
2 L.Brannon-Peppas, J.O.  Blanchette, Adv. drug deliv. Rev64, 1649 (2014).
3 J.L. Arias, Nanotechnology and drug delivery, volume one: Nanoplatforms in drug delivery, CRC Press 2014.
4 R.Singh, G.Sumana, R.Verma, S.Sood, K.Sood, R.K. Gupta, Malhotra B. Thin Solid Films. 519, 1135(2010).                                                                                                              
5 B.S.  Wong, S.L.Yoong, A.Jagusiak, T.Panczyk, H.K.Ho, W.H. Ang, G.Pastorin, Adv. Drug Deliv. Rev. 65(15), 1964 (2013).   
6 J.J.Davis, M.L.Green, H.A.O.Hill,  Y.C. Leung , P.J.Sadler, J.Sloan, A.V. Xavier,  S.C. Tsang,  Inorganica Chim. Acta. 272, 261 (1998).            
7 A.Bianco, M.Prato,   Adv. Mater. 15, 1765 (2003).          
8 Z.Liu, K.Chen, C.Davis, S.Sherlock, Q.Cao, X. Chen, H.   Dai, Cancer Res. 68, 6652 (2008).   
9 G.Pastorin, W.Wu, S.Wieckowski, J.P.Briand, K.Kostarelos, M. Prato, A.Bianco,   Chem. Comm. 11, 1182 (2006). 
10 Z.Khatti, S.M. Hashemianzadeh, S.A. Shafiei, Adv. Pharm.bull8(1), 163 (2018)
11 M.L.Contreras, C.Torres, I.Villarroel, R.Rozas, Struct. Chem30(1), 369 (2019).
12 S.Daneshmehr, Procedia Mat. Sci. 11,131 (2015).
13 M.Kamel, H.Raissi, A.Morsali, M. Shahabi, Appl. Surf. Sci. 434, 492 (2018). 
14 N.Saikia, A.N. Jha, R.C. Deka, RSC Adv. 3(35), 15102 (2013).
15 Z. Chen, D. Pierre, H. He, S. Tan, C. Pham-Huy, H. Hong, J. Huang, Int. J. Pharm. 405 , 153(2011).
16 B. Delley, J. Chem.Phys. 113, 7756 (2000).
17 J .Zhao, H. Park, J. Han, J.P.Lu, J. Phys. Chem. B. 108(14), 4227(2004).
18 H. Park, J. Zhao, J.P. Lu, Nanotechnology, 16, 635(2005).
19 E. Chełmecka,   K. Pasterny, T. Kupka,   L, Stobinski, J. Mol .Model. 18, 2241(2012).
20 K. Burke, Y.Wang, J. P. Perdew, Derivation of a Generalized Gradient Approximation: The PW91 Density Functional. In: Dobson J.F., Vignale G., Das M.P. (Eds) Electronic Density Functional Theory. Springer, Boston, MAH .1998.
21 Akbarzadeh, M.Abbaspour, S.  Salemi, New J. Chem. 40, 310 (2016).   
22 F. Tournus, J. C.  Charlier, Phys. Rev.  B. 71, 165421 (2005).
23   J.   Faver, K.M.   Merz, J.  Chemical Theo.   Comput. 6(2), 548 (2010).
24 S.A.Z.Darwish, R.Y.Elbayaa, H.M.A. Ashour, M.A. Khalil, E.A.M. Badawey, Med. Chem8, 86 (2018). 
25 S.A.Siadati, E.Vessally, A.Hosseinian, L.Edjlali, Synth.  Met.  220, 606 (2016).
26 J.M.Mercero, J.M.Matxain, X.Lopez, D.M.York, A.Largo, L.A. Eriksson, J.M.  Ugalde,      Int. J.  Mass Spectrom. 240, 37 (2005).