Calculation and comparison thermoelectric coefficients of CSAB3 perovskites using Boltzmann theory

Document Type : Original Article

Author

Department of physics- payame Noor University- Hammedan

10.22036/cr.2021.272854.1133

Abstract

Abstract
Rising global temperatures, as well as the depletion of non-renewable energy in future, have forced researchers for finding alternatives to these energies. Researches show that thermoelectric materials, which are a type of energy converters with a combination of electrical and semiconductor thermal properties that convert wasted thermal energy into electricity, can by definition be a viable alternative. A group of materials that have recently attracted the attention of researchers are perovskites with halogen-metal compound (MHP) ,(metal-halide perovskites). According to Altenkirch's theory, the quality of thermoelectric materials is determined by the coefficients of the Seebeck coefficient and the thermal conductivity. In order to calculate the charge carrier transport coefficients, the "Boltz Trap" software package has been used. The results of Boltzmann transfer theory are in many cases consistent with the results of experimental researches. Using the "Quantum Espresso" software package, the changes in the band gap size with the halogen changes in the perovskite composition have been investigated. In this work, the effective mass of charge carriers also have been calculated.

Graphical Abstract

Calculation and comparison thermoelectric coefficients of CSAB3 perovskites using Boltzmann theory

Keywords


1 A. Treatise, Semiconductors and Semimetals, Recent Trends in thermoelectric materials Research,( Academic Press,2001).
2 Rowe DM: "Thermoelectrics handbook: macro to nano":( CRC press; 2009)
3 G.S. Nolas, J . Sharp, J. Goldsmid: "Thermoelectrics: basic principles and new materials developments", vol. 45: (Springer Science & Business Media; 2013).
4 G. Carotenuto et al. Synthesis and thermoelectric characterisation of bismuth nanoparticles, J Nanopart Res, 11, 1729-1738 (2009).
5 J. Heremans and C. M. Thrush, Thermoelectric power of bismuth nanowires, Phys. Rev B, 59, 12579, (1999).
6 A. Glatz and I. S. Beloborodov, Thermoelectric performance of granular semiconductors, Phys. Rev B 80, 245440, (2009).
7 Jin-Cheng Zheng, Recent advances on thermoelectric materials, Front. Phys. China, 3, 269–279 (2008).
 8 A. F. Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling” Infosearch (Ltd., 1965).

9 J. A. Steele et al., Photophysical Pathways in Highly Sensitive Cs 2 AgBiBr 6 Double-Perovskite Single-Crystal X-Ray Detectors

Adv. Mater., 30, 1804450 (2018).
10 B. Liu,.et al., Flexible, printable soft-X-Ray detectors based on all-inorganic perovskite quantum dots, Adv. Mater., 31, 1901644 (2019).
11 W. C. Röntgen, Science 1896, 3, 227.

12 M. Tegze, G. Faigel, X-ray holography with atomic resolution Nature, 380, 49 (1996).

13 H. S. Gill, et al., Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications,  Phys. Med., 5, 20, (2018).

14 T. Rieder, et al. The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer: Preliminary Results from the X-ray Mode Science, 278, 1771 (1997).
15: Sarbu, I.; Dorca, A. A Comprehensive Review of Solar Thermoelectric Cooling Systems. Int. J. Energy Res. 2018, 42, 395− 415.
16: S. Twaha,et al. Comprehensive Review of Thermoelectric Technology: Materials, Applications, Modelling and Performance Improvement. Renewable Sustainable Energy Rev. 2016, 65, 698−726.
17: J. Qianet et al. Comprehensive Theoretical Study of Halide Perovskites ABX3. Org. Electron. 2016, 37, 61−73.
18: T. Wu,; P. Gao, Development of Perovskite-Type Materials for Thermoelectric Application. Materials, 11, No. 999 (2018).
19: W . Yin, et al. Halide Perovskite Materials for Solar Cells: A Theoretical Review. J. Mater. Chem. A , 3, 8926−8942 (2015).
20: Z. Tian,.; S. Lee,; G. Chen,  Heat Transfer in Thermoelectric Materials and Devices. J. Heat Transfer, 135,. 061605. (2013)
21: M. Konstantakou, ; T. Stergiopoulos, A critical review on tin halide perovskite solar cells. J. Mater. Chem. A, 5, 11518−11549 (2017).
22: Y. Zhao, ; K. Zhu, Organic−Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications. Chem. Soc. Rev., 45, 655−689 (2016).
23: C. Grote, ; , R. F. Berger, Strain Tuning of Tin−Halide and Lead− Halide Perovskites: A First-Principles Atomic and Electronic Structure Study. J. Phys. Chem. C, 119, 22832−22837 (2015).
24: M. Han, et al. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett., 98, No. 206805 (2007).
25: X. Li, et al. Residual Nanoscale Strain in Cesium Lead Bromide Perovskite Reduces Stability and Shifts Local Luminescence. Chem. Mater., 31, 2778−2785 (2019).
26 H. J. Goldsmid: Thermoelectric Refrigeration, (Plenum, New York, 1964)

27 L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit Phys. Rev. B 47, 12727 (1993).

1-      28 M. S. Dresselhaus, et al. Low-dimensional thermoelectric materials,  Fiz. Tverd.Tela, St. Petersburg, 41, 755–758, (1999).

29 F. Wooten, Optical Properties of Solids (NewYork:Academic 1972).
 
30 T. Takeuchi, Conditions of Electronic Structure to Obtain Large Dimensionless Figure of Merit for Developing Practical Thermoelectric Materials,  Mater. Trans. 50,2359–65 (2009).
31 T.C. Harman, et al. Journal of Electronic Materials, 34, 5, (2005).

32 K.F. Hsu, et al., Cubic AgPb(m)SbTe(2+m): bulk thermoelectric materials with high figure of merit Science 303, 818 (2004).

33 D. J. Bergman, L. G. Fel, Enhancement of thermoelectric power factor in composite thermoelectrics, J Appl. Phys. 85, 8205–16 (1999).

34 O. Yamashita, H. Odahara, S. Tomiyoshi, Effect of metal electrode on thermoelectric power in bismuth telluride compounds, J. Materials Sci. 39, 5653 – 5658 (2004).

35 M. Telkes, Int. J. Appl. Phys. 18, 1116 (1947).

36 D. Vashaee, A. Shakouri, Improved Thermoelectric Power Factor in Metal-Based Superlattices, Phys. Rev. Lett. 92, 106103 (2004).

37 L. Balan, et al. Chemical reactivity and thermal stability of nanometric alkali metal hydrides, J. Nanotechnology 15, 940–944 (2004).

38 S. Cho, et al., Thermoelectric power of MBE grown Bi thin films and Bi/CdTe superlattices on CdTe substrates. Solid State Commun. 102, 673–676(1997).

39 Y. Lin., X. Sun, M. S. Dresselhaus, Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires

Phys Rev B 62, 4610–4623 (2000).
40:A. Filippetti,.et al. Appealing Perspectives of Hybrid Lead−Iodide Perovskites as Thermoelectric Materials. J. Phys. Chem. C, 120, 28472−28479 (2016).
41: X. Wang, et al. Suppressed Phase Separation of Mixed-Halide Perovskites Confined in Endotaxial Matrices. Nat. Commun., 10, No. 695 (2019).
42:D. Wang, et al. First-Principles Investigation of Organic Semiconductors for Thermoelectric Applications. J. Chem. Phys., 131, 224704 (2009).
43: J. Feng, Mechanical Properties of Hybrid Organic-Inorganic CH3NH3BX3 (B= Sn, Pb; X= Br, I) Perovskites for Solar Cell Absorbers. APL Mater. 2,. (2014)
44: G. Wang,.; D. Wang,; X. Shi, Electronic Structure and Optical Properties of Cs2AX2′X4 (A = Ge, Sn, Pb; X′, X = Cl, Br, I). AIP Adv., 5,. 127224 (2015).
45: J. Perdew, et al. Gradient approximation made simple. Phys. Rev. Lett., 77, 3865−3868 (1996).
46: M. Torrent,; et al. Implementation of the Projector Augmented-Wave Method in the ABINIT Code: Application to the Study of Iron under Pressure. Comput. Mater. Sci., 42, 337−351 (2008).
47: Y. Yuan,.; et al. Nature of the Band Gap of Halide Perovskites ABX3 (A = CH3NH3, Cs; B = Sn, Pb; X = Cl, Br, I): First-Principles Calculations. Chin. Phys. B, 24, 116302 (2015).
48: L. Lang,; et al. FirstPrinciples Study on the Electronic and Optical Properties of Cubic ABX3 Halide Perovskites. Phys. Lett. A, 378, 290−293 (2014).
49: P. Pulay, Convergence Acceleration of Iterative Sequences. The Case Of SCF Iteration. Chem. Phys. Lett., 73, 393−398 (1980).