Tetrel Bonds; a Theoretical Study Based on the Laplacian of Electron Density and Interacting Quantum Atoms Analysis

Document Type : Original Article

Authors

1 Department of Chemistry, Isfahan University of Technology Isfahan, Iran

2 Department of Chemistry, Isfahan University of Technology

10.22036/cr.2021.268952.1139

Abstract

Tetrel bond is a noncovalent interaction between a tetrel-containing molecule and an electron donor species. In this work, the FH3 T⋯NCH and ClH3 T⋯NCH model complexes (in which T is C, Si, or Ge) are studied. Distribution of the Laplacian of the electron density of isolated FTH_3 and ClTH_3 molecules indicates that the tetrel bonds can be classified as “lump-hole” interactions. There is a region of charge depletion (hole) in the VSCC of the tetrel atom that interacts with the lump (a region with charge concentration) of the nitrogen of NCH. IQA analysis of tetrel-bonded complexes shows that the attractive interatomic tetrel-nitrogen interaction is mainly electrostatic, and the exchange-correlation term plays a minor role. Besides, the interactions between nitrogen (of NCH) and hydrogens of FH3 T play crucial roles in the formation of tetrel complexes. In the carbon complex, the hydrogen-nitrogen interactions strengthen the tetrel interaction through their attractive classical electrostatic term while stabilizing silicon and germanium complexes through their quantum mechanical components.

Graphical Abstract

Tetrel Bonds; a Theoretical Study Based on the Laplacian of Electron Density and Interacting Quantum Atoms Analysis

Keywords


 
1          P. Hobza, J. Rezac, Chemical reviews, 116, 4911, (2016)
2          P. Hobza, R. Zahradník, K. Müller-Dethlefs, Collection of Czechoslovak Chemical Communications, 71, 443, (2006).
3          K. Müller-Dethlefs, P. Hobza, Chemical Reviews, 100, 143, (2000).
4          A. E. Reed, L. A. Curtiss, F. Weinhold, Chemical Reviews, 88, (1988).
5          G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chemical reviews, 116, (2016).
6          G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati, K. Rissanen, Pure Appl. Chem, 85, (2013).
7          I. Alkorta, F. Blanco, M. Solimannejad, J. Elguero, The Journal of Physical Chemistry A, 112, 10856, (2008).
8          K. Eskandari, N. Mahmoodabadi, The Journal of Physical Chemistry A, 117, 13018, (2013).
9          S. Scheiner, Accounts of chemical research, 46, 280, (2013).
10        S. Zahn, R. Frank, E. Hey‐Hawkins, B. Kirchner, Chemistry–A European Journal, 17, 6034, (2011).
11        C. B. Aakeroy, D. L. Bryce, G. R. Desiraju, A. Frontera, A. C. Legon, F. Nicotra, K. Rissanen, S. Scheiner, G. Terraneo, P. Metrangolo, Pure and Applied Chemistry, 91, 1889, (2019).
12        M. D. Esrafili, F. Mohammadian-Sabet, Chemical Physics Letters, 634, 210, (2015).
13        M. D. Esrafili, N. Saeidi, M. Solimannejad, Journal of molecular modeling, 21, 1, (2015).
14        A. C. Legon, Physical Chemistry Chemical Physics, 19, 14884, (2017).
15        W. Wang, B. Ji, Y. Zhang, The Journal of Physical Chemistry A, 113, 8132, (2009).
16        J. L. Casals-Sainz, F. Jiménez-Grávalos, A. Costales, E. Francisco, Á. M. Pendás, The Journal of Physical Chemistry A, 122, 849, (2018).
17        K. Eskandari, Computational and Theoretical Chemistry, 1090, 74, (2016).
18        M. M. Montero-Campillo, O. Mó, M. Yáñez, I. Alkorta, J. Elguero, Advances in Inorganic Chemistry, 73, 73, (2019).
19        M. Yáñez, P. Sanz, O. Mó, I. Alkorta, J. Elguero, Journal of chemical theory and computation, 5, 2763, (2009).
20        K. Eskandari, Journal of molecular modeling, 18, 3481, (2012).
21        K. E. Riley, P. Hobza, Wiley Interdisciplinary Reviews: Computational Molecular Science, 1, 3, (2011).
22        K. T. Mahmudov, A. V. Gurbanov, F. I. Guseinov, M. F. C. G. da Silva, Coordination Chemistry Reviews, 387, 32, (2019).
23        R. R. Knowles, E. N. Jacobsen, Proceedings of the National Academy of Sciences, 107, 20678, (2010).
24        B. Rybtchinski, ACS nano, 5, 6791, (2011).
25        M. Bartkowski, S. Giordani, Nanoscale, 12, 9352, (2020).
26        Z. Su, R. Zhang, X.-Y. Yan, Q.-Y. Guo, J. Huang, W. Shan, Y. Liu, T. Liu, M. Huang, S. Z. Cheng, Progress in Polymer Science, 103, 101230, (2020).
27        S. J. Grabowski, Physical Chemistry Chemical Physics, 16, 1824, (2014).
28        A. Bauzá, T. J. Mooibroek, A. Frontera, The Chemical Record, 16, 473, (2016).
29        A. Bauzá, T. J. Mooibroek, A. Frontera, Angewandte Chemie International Edition, 52, 12317, (2013).
30        A. Karim, N. Schulz, H. Andersson, B. Nekoueishahraki, A.-C. C. Carlsson, D. Sarabi, A. Valkonen, K. Rissanen, J. r. Gräfenstein, S. Keller, Journal of the American Chemical Society, 140, 17571, (2018).
31        Z. Rezaei, M. Solimannejad, M. D. Esrafili, Computational and Theoretical Chemistry, 1074, 101, (2015).
32        S. Scheiner, The Journal of Physical Chemistry A, 122, 7852, (2018).
33        S. A. Southern, D. L. Bryce, The Journal of Physical Chemistry A, 119, 11891, (2015).
34        S. A. Southern, M. S. West, M. J. Bradshaw, D. L. Bryce, The Journal of Physical Chemistry C, 125, 2111, (2021).
35        X. García-LLinás, A. Bauzá, S. K. Seth, A. Frontera, The Journal of Physical Chemistry A, 121, 5371, (2017).
36        M. Hou, Q. Li, S. Scheiner, Chemical Physics Letters, 731, 136584, (2019).
37        S. Scheiner, Faraday discussions, 203, 213, (2017).
38        D. Mani, E. Arunan, The Journal of Physical Chemistry A, 118, 10081, (2014).
39        J. L. Casals-Sainz, A. C. Castro, E. Francisco, Á. M. Pendás, Molecules, 24, 2204, (2019).
40        M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, J. L. S. A. F. Izmaylov, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox,, "Gaussian 09 version D. 01", Gaussian Inc., Wallingford, (2009).
41        T. A. Keith, "AIMAll, Version 19.10.12", TK Gristmill Software, Overland Park KS, USA, (2019).
42        M. Blanco, A. Martín Pendás, E. Francisco, Journal of chemical theory and computation, 1, 1096, (2005).
43        R. Bader, Atoms in Molecules: A Quantum Theory: Oxford University Press, New York, (1990).
44        P. Popelier, Coordination Chemistry Reviews, 197, 169, (2000).
45        N. O. Malcolm, P. L. Popelier, Faraday discussions, 124, 353, (2003).
46        A. M. Pendás, M. Blanco, E. Francisco, The Journal of chemical physics, 120, 4581, (2004).
47        A. Martín Pendás, M. Blanco, E. Francisco, The Journal of chemical physics, 125, 184112, (2006).
48        C. F. Matta, R. J. Boyd, The quantum theory of atoms in molecules: from solid state to DNA and drug design: John Wiley & Sons, (2007).
49        R. W. F. Bader, C. F. Matta, Foundations of Chemistry, 15, 253, (2013).
50        K. Eskandari, H. Zariny, Chemical Physics Letters, 492, 9, (2010).
51        K. Eskandari, M. Lesani, Chemistry–A European Journal, 21, 4739, (2015).
52        N. Orangi, K. Eskandari, J. C. Thacker, P. L. Popelier, ChemPhysChem, 20, 1922, (2019).
53        J. C. Thacker, P. L. Popelier, The Journal of Physical Chemistry A, 122, 1439, (2018).
54        E. Francisco, D. Menéndez Crespo, A. Costales, Á. Martín Pendás, Journal of computational chemistry, 38, 816, (2017).