X-ray absorption fine structure and its applications to structure determination

Document Type : Original Article

Authors

Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

10.22036/cr.2021.264560.1130

Abstract

X-ray absorption fine structure (XAFS) denotes the details of how X-ray is absorbed by an atom at energies near and above the core-level binding energies of that atom. Specifically, XAFS is the modulation of an atom’s X-ray absorption probability because of the chemical and physical state of the atom. XAFS spectra are especially sensitive to the formal oxidation state, the coordination chemistry,, and the distances, coordination number, and the species of the atoms instantly surrounding the selected element. Because of this dependency, XAFS provides a useful, and pretty simple way to determine the chemical state and the local atomic structure for a certain atomic species. XAFS can be used in a variety of systems and bulk physical environment. XAFS is normally used in a wide range of scientific fields, including biology, environmental science, catalysts research, and material science. Herein, the structures of a few inorganic compounds are investigated by XAFS.

Graphical Abstract

X-ray absorption fine structure and its applications to structure determination

Keywords


1 J. A. Bearden, A. F. Burr, Rev. Mod. Phys. 39, 125 (1967).
2 J. E. Penner-Hahn, X-ray Absorption Spectroscopy, The University of Michigan, Ann Arbor, MI, USA.
3 Matthew Newville, Fundamentals of EXAFS, Consortium for Advanced Radiation Sources, University of Chicago, Chicago, IL. Revision 1.6 July 22, 2004.
4 J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics, John Wiley & Sons, 2001.
5 E. A. Stern and S. M. Heald, E. E. Koch, Principles and Applications of EXAFS, Chapter 10 in Handbook of Synchrotron Radiation, pp 995–1014, North-Holland, 1983.
6 R. W. Strange, N. J. Blackburn, P. F. Knowles, S. S. Hasnain, J. Am. Chem. Soc. 109, 7157(1987).
7 B. K. Teo, J. Am. Chem. Soc. 103, 3990 (1981).
8 J. J. Rehr, R. C. Albers, S. I. Zabinsky, Phys. Rev. Lett. 69, 3397(1992).
9 D. E. Sayers, E. A. Stern, F. W. Lytle, Phys. Rev. Lett. 27, 1204 (1971).
10 T. L. Stemmler, T. Barnhart, J. E. Penner-Hahn, C. E. Tucker, P. Knochel, M. Bohme, G. Frenking, J. Am. Chem. Soc.,117, 12489 (1995).
11 M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita. Yamamoto, H. Ago and Jian-Ren Shen, Nature, 517, 99 (2015).
12 Y. Mousazade, M. R. Mohammadi, R. Bagheri, R. Bikas, P. Chernev, Z. Song, T. Lis, M. Siczek, N. Noshiranzadeh, S. Mebs, H. Dau, I. Zaharieva, M. M. Najafpour, Dalton Transactions 49, 5597 (2020).