Ab initio study on the some transport properties of a field-effect molecular switch: Intra- molecular electronics approach

Document Type : Original Article

Authors

Department of Chemistry, Faculty of Science, University of Qom, Qom, I.R. Iran

10.22036/cr.2021.281455.1141

Abstract

In this research, a ab initio (computational) study was performed on some electronic/vibrational transport properties of a field-effect molecular switch. Since the ON/OFF switching mechanism of this molecular switch is performed by applying an external electric field, therefore, quantum study of mechanism of charge/energy transfer (at atomic scale), and also predict the behavior of voltage-current (I-V) plot of this field-effect molecular switch were investigated, using atoms- in- molecule theory (AIM), and Landauer theory (LT). Analysis of these results showed that when the intensity of the applied electric field increases to 0.006au, the molecular switch is in the (ON) state. In addition, in this study, the effect of electrode (gold) on some transport properties of this field-effect molecular switch was also studied. Analysis of this results show that the gold electrodes play an important role in the local (intramolecular) charge and energy transfer, and consequently the I-V diagram of this molecular switch. It is expected that such ab initio quantum research (without the use of numerical methods such as Green's function methods) could open new horizons in the quantum study of molecular parts at the atomic-intramolecular scale.

Graphical Abstract

Ab initio study on the some transport properties of a field-effect molecular switch: 
Intra- molecular electronics approach

Keywords


  1. T. Mathew, F. Fang, Engineering 4 (2018) 760.
  2. Philippe, S. Campidelli, P. Chenevier, V. Derycke, A. Filoramo, M. F. Goffman, Chimia(Aarau) 64 (2010) 414.
  3. Ratner, Nature Nanotechnology 8 (2013) 378.
  4. Kaur, S. Yadav, S. Singh, Nano Materials Basic Concepts and Applications 222 (2015) 99.
  5. Chen, W. Wang, J. KlemicM. A. ReedB. W. AxelrodD. M. KaschakA. M. RawlettD. W. PriceS. M. DirkJ.M. TourD. S. GrubishaD. W. Bennett, Ann N Y Acad Sci. 960 (2002) 99.
  6. D. Ward, J. Chem. Educ 78(2001) 321.
  7. Xin, J. GuanC. Zhou, X. Chen, C. Gu, Y. Li, M. A. Ratner, A. Nitzan, Nature Reviews Physics 1 (2019) 211.
  8. Jia, B. Ma, N. Xin, X. Guo, Acc. Chem. Res. 48 (2015) 2565.
  9. Nano and Molecular Electronics Handbook; Wang, T. Lee, M. A. Reed,; CRC Press, Boca Raton, 2007.
  10. T. Mathew, F. Fang, Engineering, 4 (2018) 760.
  11. Nero, F.M. Souza, R. Capaz, J. Comput. Theor, Nanosci,   7 (2010) 503.
  12. Li, K. Xu, X. Sun, Instrument. Sci. Technol. 48 (2020) 518.
  13. Audi, V. Viero and et all.,  Nanoscale, , 12 (2020) 10127.
  14. . Atoms in Molecules; F. W. Bader; Oxford University, U.K., 1995.
  15. F. Matta, R. J. Boyd, The Quantum Theory of Atoms in Molecules, Wiley, Weinheim, 2007.
  16. Noelia, M. L. Ana, Á. C. Luis, R. María, P. Andres, C. Juan, Nanoscale 3 (2011) 4003.
  17. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V. B. Engelkes, C. D. Frisbie, Advanced Materials 15 (2003) 1881.
  18. Molecular Switches; Feringa, B. L.; Wiley, Weinheim, 2007.
  19. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 98, Gaussian, Inc. Pittsburgh, PA (1998).
  20. Friedrich, D. Yang, G. Schonbohm, and R. W. F. Bader, Atoms in Molecules (AIM), McMaster University, Canada (2000).
  21. LinJ. Li, W. Wang, S. D. Liang, D. X. Yao, Scientific Reports 8 (2018)1674.