Theoretical study of the application of decaborane nanobasket (B10H14) and its fluorinated derivatives as anode materials of Lithium-ion batteries: Density Functional Theory

Document Type : Original Article

Authors

Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

10.22036/cr.2022.334354.1175

Abstract

Lithium - ion batteries (LIBs) are good alternative to traditional energy sources, which are considerably used in electronic devices. These sources have high energy density and long life. For this purpose, an attempt is made to design batteries based on nanostructures that have a significant voltage. In this study, the application of decaborane (B10H14) and its fluorinated derivatives in anode of Lithium-ion batteries is investigated using density functional theory (DFT) calculations. The results indicate that the cell voltage in decaborane (B10H14) is negative, which is unfavorable. One strategy to improve the function of decaborane is based on the substitution of hydrogen atoms in different positions with fluorine atoms. This can improve the cell function and increase the cell voltage remarkably to +1.10 Volt. This results might be useful for the design of novel inorganic-based anode materials for lithium-ion batteries. we hope the results provide meaningful insights for developing Lithium - ion batteries.

Graphical Abstract

Theoretical study of the application of decaborane  nanobasket (B10H14) and its fluorinated derivatives as anode materials of Lithium-ion batteries: Density Functional Theory

Keywords

Main Subjects


  1. R. Lu, D. Rao, Zh. Meng , X. Zhang, G. Xu, Y. Liu, E. Kan, C. Xiao and K. Deng, Phys Chem Chem Phys, 15 (2013) 16120-16126.
  2. S. Goripati, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Power Sources, 257 (2014) 421-443.
  3. R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, Mater. Chem. 21 (2011) 9938-9954.
  4. Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Z. D. Deng , J. Xiao, A review, Power Sources, 286 (2015) 330-345.
  5. J. Li, J. Klee Barillas, C. Guenther, M.A. Danzer, Power Sources, 230 (2013) 244-250.
  6. M. Miroshnikov, K. P. Divya, G. Babu, A. Meiyazhagan, L. M. R. Arava, P. M. Ajayan, G. John, Mater. Chem. 4 (2016) 12370-12386.
  7. N. Nitta, F. Wu, J. T. Lee, G. Yushin, Materials Today, 18 (2015) 252-264.
  8. J. M. Tarascon, M. Armand, Nature, 414 (2001) 359-367.
  9. M.M. Thackeray, C. Wolverton, E.D. Isaacs, Energy Environ. Sci. 5 (2012) 7854-7863.
  10. A. Manthiram, Phys. Chem. Lett. 2 (2011) 176-184.
  11. K.T. Lee, S. Jeong, J. Cho, Acc. Chem. Res. 5 (2012) 1161-1170.
  12. G. Ceder, G.Hautier, A.Jain and S.P.Ong, Materials Research Society, 36 (2011) 185-191.
  13. Y. Liang, Z. Tao, J. Chen, Adv. Energy Mater. 2 (2012) 742-769.
  14. S. Goriparti, M.N.K. Harish, S. Sampath, Chem. Commun. 49 (2013) 7234.
  15. Z. Gong, Y. Yang, Energy Environ. Sci. 4 (2011) 3223-3242.
  16. H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, J. Am. Chem. Soc. 132 (2010) 13978 –13980.
  17. K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. Hinuma, Y.S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, G. Ceder, J. Phys. Chem. Lett. 1 (2010) 1176 -1180.
  18. N.A. Kaskhedikar, J. Maier, Adv. Mater. 21 (2009) 2664-2680.
  19. J. Liu, Adv. Funct. Mater. 23 (2013) 924-928.
  20. R. Baierlein, Am. J. Phys. 69 (2001) 423.
  21. P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930-2946.
  22. F. Jiao, P.G. Bruce, Adv. Mater. 19 (2007) 657-660.
  23. J. Hosseini, A. Rastgou, R. Moradi, Molecular Liquids, 225 (2017) 913-918.
  24. D. Hnyk, J. Holub, S. A. Hayes, M. F. Robinson, D. A. Wann, H. E. Robertson, D. W. H. Rankin, Inorg. Chem. 45 (2006) 8442–8446.
  25. M. Moradi, Z. Bagheri, A. Bodaghi, Physica E Low Dimens. Syst. Nanostruct. 89 (2017) 148-154
  26. J. Hosseini, A. Rastgou, R. Moradi, 225 (2017) 913-918.
  27. R. Rahimi, M. Solimannejad, J. Mol. Model. 26 (2020) 157.
  28. I. Sioutis, R. M. Pitzer, J. Phys. Chem. A 110 (2006) 12528–12534.
  29. D. F. Gaines, H. Beal , Inorg. Chem. 39 (2000) 1812–1813.
  30. W. C. Ewing, P. J. Carroll, L. G. Sneddon, Inorg. Chem. 49 (2010) 1983.
  31. S. Muhammad, H. Xu, Z. su, J. Phys. Chem. 115 (2011) 923-931.
  32. F. Li, P. Jin, D. Jiang, L. Wang, S. B. Zhang, J. Zhao and Z. Chen, J. Chem. Phys. 136 (2012) 074302.
  33. M. J. Pender, P. J. Carroll, g. Sneddon, L. G. Inorg. Chem. 32 (1993) 1963-1969.
  34. S. Gao, G. Shi, H. Fang, Nanoscale, 8 (2016) 1451 –1455.
  35. K. Nejati, A. Hosseinian, L. Edjlali, E. Vessaly, Molecular Liquids, 229 (2017) 167-171.
  36. S. Ullah, P.A. Denis, F. Sato, Appl. Mater. Today, 9 (2017) 333-340,