Theoretical study of the structural and thermodynamic properties of Theophylline alone and in boron nitride nanotube electromagnetic field

Document Type : Original Article

Authors

1 Department of Chemistry, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

2 Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran

Abstract

In this study, since alkaloids are the main substance of many bitter drugs, so structural, electron, reactivity, aromaticity and thermochemical properties of alkaloid purine in the presence of a nanotube and in the absence of nanotubes are investigated. Therefore, the non-bonded interaction of single-wall boron nitride (8.8) with a length of 5 angstroms with theophylline has been studied theoretically. The effects of electron unconsideration, dipole-dipole interactions and spatial suppression on structural and electron properties and the reactivity of the theophylline structure in the presence of single-wall boron nitride nanotubes (8,8), using quantum mechanical calculations of density functional theory at B3LYP and 6-31G * basis set have been reviewed. Frequency calculations were performed to determine the thermodynamic functions and vibration frequencies in the gas phase. Also, NMR isotropic parameters are calculated using the GIAO method to obtain structural information, dynamic behavior and inter-molecular interactions, and the results obtained from NMR spectra are discussed and concluded.

Graphical Abstract

Theoretical study of the structural and thermodynamic properties of Theophylline alone and in boron nitride nanotube electromagnetic field

Keywords

Main Subjects


1) A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B. 49 (1994) 5081.
2) N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 296 (1995) 966.
3) M. J. Frisch, et al., Gaussian 09. Revision A.1, Inc.: Wallingford CT, 2009.
4) J.O.C. Jiménez - Halla, E. Matito, J. Robles, M. Solà, J. Organometall. Chem. 691 (2006) 4359.
5) R.G. Pearson, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68 (1978) 3801.
6) N. Sundaraganesan, G. Elango, C. Meganathan, B. Karthikeyan, M. Kurt, J. Mole. Simulation 35 (2009) 705.
7) A. Stanger, J. Org. Chem. 71 (2006) 883.
8) P.V.R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J.v.E. Hommes, J. Am. Chem. Soc. 118 (1996) 6317.
9) R. Gershoni - Poranne, C.M. Gibson, P.W. Fowler, A. Stanger, J. Org. Chem. 78 (2013) 7544.
10) T. Krygowski, M. Cyranski, Z. Czarnocki, G. Häfelinger, A.R. Katritzky, Tetrahedron 56 (2000) 1783.
11) N.S. Mills, K.B. Llagostera, J. Org. Chem. 72 (2007) 9163.
12) K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251.