Covalently- modified graphene-polyaniline nanocomposite by interfacial polymerization

Document Type : Original Article

Authors

Department of Chemistry, Payame Noor University, PO Box: 19395-3697, Tehran

Abstract

Covalently- modified graphene-polyaniline nanocomposite by interfacial polymerization
Soghra Fathalipour*a, Soraya Azizia
a Department of Chemistry, Payame Noor University, PO Box: 19395-3697, Tehran

Abstract
In this work, covalent modified graphene –polyaniline (PANI) nanocomposite with high dispersity in aqueous media was synthesized via interfacial polymerization. First, synthesized graphene oxide (GO) from modified Hummer's method was covalently modified with mercapto ethanol and then reduced with hydrazine monohydrate. Finally, PANI was grafted on modified graphene through interfacial polymerization. Synthesized nanocomposite was characterized with Uv-vis, FT-IR, SEM-EDAX, TEM, XRD and TGA techniques. FT-IR confirmed the modification of GO and synthesis of PANI and XRD spectra showed improvement of crystallinity of PANI in the presence of modified graphene. SEM and TEM images showed the presence of modified graphene and PANI nanostructures.Termogravimitry analysis displayed higher thermal stability of nanocomposite rather than polyaniline and GO. Finally, the electroactivity behavior of grafted PANI on modified graphene oxide was investigated by cyclic voltammetry (CV) method. The results of CV displayed the enhancement of electroactivity of modified graphene in the presence of PANI chains.

Keywords: Graphene oxide, Mercaptoethanol, Polyaniline, Thermal behavior,

Graphical Abstract

Covalently- modified graphene-polyaniline nanocomposite by interfacial polymerization

Keywords

Main Subjects


1) X. Wang, X. Zhang, Electrochimica Acta 112 (2013) 774.
2) S. Fathalipour, E. Abdi, Synthetic Metals 221 (2016) 159-168.
3) S. Fathalipour, S. Pourbeyram, A. Sharafian, A. Tanomand, P. Azam, Mater. Sci. Engin.: C 75 (2017) 742.
4) S. Fathalipour, M. Mardi, Mater. Sci. Engin.: C 79 (2017) 55.
5) P.T. Yin, S. Shah, M. Chhowalla, K.-B. Lee, Chem. Rev. 115 (2015) 2483.
6) G. Ćirić-Marjanović, Synthetic Metals 177 (2013) 1.
7) C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 7 (2007) 3499.
8) Y. Meng, K. Wang, Y. Zhang, Z. Wei, Adv. Mater. 25 (2013) 6985.
9) S. Ameen, H.-K. Seo, M.S. Akhtar, H.S. Shin, Chem. Engin. J. 210 (2012) 220.
10) C. Bora, R. Pegu, B.J. Saikia, S.K. Dolui, Polym. International 63 (2014) 2061-2067.
11) K. Zhang, L.L. Zhang, X. Zhao, J. Wu, Chem. Mater. 22 (2010) 1392.
12) X. Liu, P. Shang, Y. Zhang, X. Wang, Z .Fan, B. Wang, Y. Zheng, J. Mater. Chem. A 2 (2014) 15273.
13) B. Ou, R. Huang, W. Wang, H. Zhou, C. He, RSC Adv. 4 (2014) 43212.
14) N.A. Kumar, H.-J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.-B. Baek, ACS Nano 6 (2012) 1715.
15) L. Jianhua, A. Junwei, Z. Yecheng, M. Yuxiao, L. Mengliu, Y. Mei, L. Songmei, ACS Appl. Mater. Interfaces 4 (2012) 2870.
16) J. An, J. Liu, Y. Zhou, H. Zhao, Y. Ma, M. Li, M. Yu, S. Li, J. Phys. Chem. C 16 (2012) 19699.
17) J. Zhu, M. Chen, H. Qu, X. Zhang, H. Wei, Z. Luo, H.A. Colorado, S. Wei, Z. Guo, Polymer 53 (2012) 5953.
18) D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4 (2010) 4806.
19) M.M. Ayad, N. Prastomo, A. Matsuda, J. Stejskal, Synthetic Metals 160 (2010) 42.
20) B. Massoumi, S. Fathalipour, A. Massoudi, M. Hassanzadeh, A.A. Entezami, J. Appl. Polym. Sci. 130 (2013) 2780.
21) U. Male, P. Srinivasan, B.S. Singu, International Nano Lett. 5 (2015) 231.
22) S. Bouazza, V. Alonzo, D. Hauchard, Synthetic Metals 159 (2009) 1612.
23) B. Zhang, Y. He, B. Liu, D. Tang, Microchim. Acta 182 (2015) 625.