Investigation of structures, binding energies and thermodynamic properties of ionic liquid [Mim+][B(CN)4−]

Document Type : Original Article

Authors

1 Associate Professor-Physical Chemistry Department of Chemical Engineering, Sirjan University of Technology

2 دانشگاه پیام نور سیرجان

3 دانشگاه آزاد سیرجان

Abstract

In the present study, intermolecular interactions between cation and anion in methylimidazolium tetracyanoborate ionic liquid [Mim+][B(CN)4−] have been studied using B3LYP/6-311G(2d,2p) level of theory. Four ion pairs were found on the potential energy surface. The most stable structures contain both N∙∙∙H–N and N∙∙∙H–C hydrogen bonds. Structures, interaction energies, hydrogen bonding, physical and thermodynamic properties as well as topological properties have been investigated. The effect of different solvents on the stability of complexes and monomers was examined. The thermodynamic properties of ion pairs were calculated using COSMO-RS model. NICS used for indicating of aromaticity of cation ring upon complexation. The NBO results show that in all the ion pairs, the charge transfer taking place from anion to cation. Also, the LPN * (N–H) and LPN* (C-H) donor–acceptor interactions are most important interactions in these complexes. The QTAIM results reveal that all interactions have electrostatic nature. It is predicted that N…H-N interaction is stronger than N…H-C one.

Graphical Abstract

Investigation of structures, binding energies and thermodynamic properties of ionic liquid [Mim+][B(CN)4−]

Keywords

Main Subjects


1) W. Liu, L. Cheng, Y. Zhang, H. Wang, M. Yu, J. Mol. Liq, 140, 68 (2008).
2) A. Triolo, O. Russina, B. Fazio, G. B. Appetecchi, M. Carewska, S. Passerini, J. Chem. Phys, 130, 164521 (2009).
3) S. H. Shamsi, N. D, Danielson, J Sep Sci 30, 1729 (2007).
4) M. A. P. Martins, C. P. Frizzo, D. N. Moreira, N. Zantta, H. G. Bonacorso, Chem. Rev, 713, 2015 (2008).
5) F. Van Rantwijk, R. A. Sheldon, Chem. Rev, 107, 2757 (2007).
6) R. Hagiwara, Y. J. Ito, Fluorine Chem, 105, 221 (2000).
7) J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chem, 3, 154 (2001).
8) T. Welton, Chem .Rev, 99, 2071 (1999).
9) S. Werner, M. Haumann, P. Wasserscheid,  Annu. Rev. Chem. Biomol. Eng, 1, 203 (2010).
10) H. Ohno, Electrochemical Aspects of Ionic Liquids, Wiley: Hoboken NJ. 2011.
11) W. L. Hough, R. D. Rogers, Bull. Chem. Soc. Jpn, 80, 2262 (2007).
12) H. Roohi, S. Khyrkhah, J Mol Liq 177,119 (2013).
13) J. J. Allen, S. R. Bowser, K. Krishnan Damodaran, Phys Chem Chem Phys, 16, 8078 (2014).
14) H. Roohi, R. Salehi. J Mol Liq, 161, 63–71 (2011).
15) A. Giełdoń, M. Bobrowski, A. Bielicka-Giełdoń, C. Czaplewski. J Mol Liq, 225, 467 (2016).
16) Q. Zhang, Y. Lan, H. Liu, X. Zhang, X. Zhang, Y. Wei, J Chem Eng Data, 61, 2002 (2016).
17) V. Znamenskiy, M. N. Kobrak, J. Phys. Chem. B, 108, 1072 (2004).
18) M. Kermanioryani, M. I. A. Mutalib, Y. Dong, K. C. Lethesh, O. B. O. Ben Ghanem, K. A. Kurnia, J. M. Leveque, J Chem Eng Data, 61, 2020 (2016).
19) E. I. Izgorodina, Z. L. Seeger, D. L. A. Scarborough, S. Y. S. Tan, Chem Rev, 117, 6696 (2017).
20) P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, M. Gratzel, Chem. Mater. 16, 2694 (2004).
21) S. F .Boys, F.Bernardi, Mol Phys, 19, 553 (1970).
22) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
23) E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO, Version 3.1. Gaussian Inc, Pittsburgh, PA, 1992.
24) F. Biegler-Knig, J. Schnbohm, D. Bayles, J Comput Chem, 22, 545 (2001).
25) S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981).
26) K. Wolinski, J. F. Hilton, P. Pulay, J Am Chem Soc, 112, 8251 (1990).
27) A. Klamt, J. Phys. Chem, 99, 2224 (1995).
28) J. Palomar, V. R. Ferro, J. S. Torrecilla, F. Rodrıguez, Industrial and Engineering Chemistry Research, 46, 6041 (2007).
29) U. P. R. M. Preiss, J. M. Slattery, I. Krossing, Industrial and Engineering Chemistry Research, 48, 2290 (2009).