Preparation and quality control of DTPA core-shell nanoparticles and optimization of its labeling conditions with gallium-68

Document Type : Original Article

Authors

1 aeoi

2 expert

Abstract

The aim of this study was to investigate the effects of temperature and time and pH on the labeling of magnetic nanoparticles containing Gallium-68 radioisotope as a high-resolution imaging agent for PET/MRI imaging. Iron magnetic nanoparticles are prepared by a coherent method from a solution containing iron ions 1 and 2 in the presence of ammonium hydroxide, and then coated with silica to increase surface activity and protect nanoparticles against oxidation and to prevent the accumulation of particles (Stöber method). The core-shell nanoparticles were prepared by 3-amino-propyl tri-methoxy-silane (APTES), which has been formulated with amine groups and ultimately attached to the DTPA-causing agent. The use of DTPA results in the intrinsic in vivo stability of this complex. The particle size was measured on the basis of analyzes of about 30-40 nm. The nanoparticles were labeled with GaI-68 at pH =3/5 and the marking efficiency was measured by thin-layer chromatography. The optimum conditions for indicating the temperature of 60 °C and 30 minutes were determined.

Graphical Abstract

Preparation and quality control of DTPA core-shell nanoparticles and optimization of its labeling conditions with gallium-68

Keywords


1) D.J. Ratnesh, P. Prajakta, J. Vandana, Cont. Release. 138, 90-102 (2009)
2) R. Langer, Nature. 392, 5-10 (1998)
3) M.W. Freeman, A. Arrott, J.H.L. Watson, J. Appl. Phys. 31, S404-405 (1960)
4) M. Mahmoudi, M. Sahraian, M. Shokrgozar, Chem. Neurosci. 2,118-140 (2011)
6) R. Torres, R. Tavare, Angew. Chem. Int. Ed. 50, 5509- 5513 (2011)
7) J. Morfin, E. Toth, Inorg. Chem. 50, 10371-10378 (2011)
8) TJ. Wadas, EH. Wong, G. Weisman, C. Anderson, Chem. Rev. 110, 2858-2902 (2010)
9) S. Kakaei, E. Sattarzadeh, Main group chem. 17, 161-164 (2018)
10) Z. Pourmanouchehri, M. Jafarzadeh, S. Kakaei, E. Sattarzadeh, J. Inorg. Organo. Poly. Mat. 28, 1980-1990 (2018)
1) B. Burke, N. Baghdadi, Faraday Discuss. 175, 59-71 (2014)
12) Y. He, Q. Wang, CR. Li, J. Phys. D: Appl. Phys. 38,1342-1350 (2005)
13)W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62-69 (1986)
14) K. Kim, S. Kim, Y. Chao, J. Ind. Eng. Chem. 13, 1137-1141 (2007)
15) S. Chen, J. Feng, X. Gua, Mater Lett. 59, 985-988 (2005)
16) H. Ma, X. Qi, Int. J. Pharm. 333, 177-186 (2007)
17) J.F. MorfinÉ. Tóth, Inorg. Chem. 50,  10371-10378 (2011)
18) T.J. WadasE.H. WongG.R. WeismanC.J. Anderson, Chem. Rev., 110, 2858-2902 (2010) 
19) E. Sattarzadeh, M.M. Amini, S. Kakaei, A. Khanchi, Radio Chim. Acta. 106, 897-907 (2018).
20) H. Cao, J. He, L. Deng, Appl. Surf. Sci. 255, 7974-7980 (2009)