Sustained release of carboplatin as an anticancer drug from nanocarrier of reduced graphene oxide/albumin nanoparticles: study of behaviour and release mechanism in acidic media

Document Type : Original Article

Authors

Materials and Energy Research Center

10.22036/cr.2020.224855.1118

Abstract

Nanotechnology is a tool to the performance improvement of systems in the medical field. Based on this purpose, reduced graphene oxide nanoparticle/albumin nanoparticles as a drug carrier was chosen for sustained release of anticancer carboplatin. The release behavior, mechanism type of diffusion and other pharmacokinetic parameters were studied. Initially, The size distribution, hydrodynamic diameter and morphology of reduced graphene oxide nanoparticles / albumin nanoparticles (1 to 5 wt.%) were investigated by dynamic light scattering (DLS) and scanning electron microscopy (FESEM). Then, carboplatin was loaded on the carrier and the encapsulation percentage was 50.13% and the drug loading percentage was 48.85%. Drug release behavior in an acidic environment similar to cancer tissue was assessed for 167 h by UV-Vis spectroscopy and it was shown that drug was released slowly. The release mechanism studies were shown that release mechanism followed by Korsmeyer-Pepas and non-Fickian diffusion. Other kinetic parameters such as kinetic constant, rate of release and maximum concentration of released drug were also calculated. We hope that the results can be introducing carrier based on carbon-protein for cancer treatment.

Graphical Abstract

Sustained release of carboplatin as an anticancer drug from nanocarrier of reduced graphene oxide/albumin nanoparticles: study of behaviour and release mechanism in acidic media

Keywords


1)       J. Folkman, D.M. Long, J. Surg. Res. 4(3), 139 (1964).
2)       B.Wang, L. Hu, T.J. Siahaan, Drug delivery: principles and applications. John Wiley & Sons (2016).
3)       R. Langer, N.A. Peppas, Biomat. 2(4), 201 (1981).
4)       F. Rezaei, M. Saeidifar, M. Javaheri, P. Sangpour, Col. Surf. B. 171, 10 (2018).
5)       Z. Sheng, L. Song, J. Zheng, D. Hu, M. He, M. Zheng, G. Gao, P. Gong, P. Zhang, Y. Ma, L. Cai, Biomat. 34(21), 5236 (2013).
6)       K. Muthoosamy, R. G Bai, S. Manickam, Curr. Drug Del. 11(6), 701 (2014).
7)       C. McCallion, J. Burthem, K. Rees-Unwin, A. Golovanov, A. Pluen, Europ. J. Pharm. Biopharm. 104, 235 (2016).
8)       X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res. 1(3), 203 (2008).
9)       G.J. Quinlan, G.S. Martin, T.W. Evans, Hepatology, 41(6), 1211 (2005).
10)    G. Fanali, A. di Masi, V. Trezza, M. Marino, M. Fasano, P. Ascenzi, Mol. Aspect. Med. 33(3), 209 (2012).
11)    F. Kratz, J. control. Release. 132(3), 171 (2008).
12)    A.K. Iyer, G. Khaled, J. Fang, H. Maeda, Drug dis. Today, 11(17), 812 (2006).
13)    K. Greish, Cancer Nanotechnology: Methods and Protocols (2010).
14)    C. Heneweer, J.P. Holland, V. Divilov, S. Carlin, J.S. Lewis, J. Nuc. Med. 52(4), 625 (2011).
15)            M. Goudarzvand, Z. Ataie, Alborz Univers. Med. Sci. J. 7 (3), 220 (2018).
16)    N. Fattahian Kalhor, M. Saeidifar, H. Ramshini, A.A. Saboury, J. Biomol. Struct. Dyn. 1, in press (2019).
17)    K. Westesen, H. Bunjes, M.H.J. Koch, J. Control. Release. 48(2), 223 (1997).
18)    S. Dash, P.N. Murthy, L. Nath, P. Chowdhury, Acta Pol. Pharm. 67(3), 217 (2010).
19)    G.H. Son, B.-J. Lee, C.-W. Cho, J.Pharm. Invest. 47(4), 287 (2017).
20)    J.Y. Jun, H.H. Nguyen, H.S. Chun, B.-C. Kang, S. Ko, Food Chem. 127(4), 1892 (2011).
21)    M. Gaumet, A. Vargas, R. Gurny, F. Delie, Europ. J. Pharm. Biopharm. 69(1), 1 (2008).
22)    Hossein Ayazi, O. Akhavan, M. Raoufi, R. Varshochian, N.S. Hosseini Motlagh, F, Atyabi, Col. Surf. B. 186, 110712 (2020).
23)    A. Pourjavadi, S. Asgari, S.H. Hosseini, J. Drug Del. Sci. Tech. 56, 101542 (2020).
24)    G. Darabdhara, M.R. Das, S.P. Singh, A.K. Rengan, S. Szunerits, R. Boukherroub, Adv. Col. Inter. Sci. 271, 101991 (2019).
25)    T. Zhou, X. Zhou, D. Xing, Biomat. 35 (13), 4185 (2014).
26)    X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan,Y. Chen, J. Mater. Chem. 21(10), 3448 (2011).
27)    https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi.
28)    F. Ahmed, M.J. Ali, A.K. Kondapi, Int. J. Biol. Macromol. 70, 572 (2014).
29)    M. Hassanzadeganroudsari, A. Heydarinasab, M. Soltani, P. Chen, A. Akbarzadehkhiyavi, J. Drug Del. Sci. Tech. 54, 101218 (2019).
30)    X. Zhu, Y. Peng, L. Qiu, Col. Surf. B. 157, 156 (2017).
31)    R.W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N.A. Peppas, Int. J.Pharm. 15(1), 25 (1983).
32)    Y. Fu, W.J. Kao, Expert. Opin. Drug Deliv. 7(4), 429 (2010).