Experimental and Theoretical Studies of One Dihydropyridine Derivative as Corrosion Inhibitor in Acidic Media (H2SO4,, HCl)

Document Type : Original Article

Authors

1 department of chemistry,,Payam Noor University, Tehran, Iran

2 Islamic Azad University, Lamerd Branch, P.O. Box 74341-553881, Lamerd, Iran

10.22036/cr.2022.291726.1147

Abstract

A new organic compound, namely dihydropyrimido [4,5-b][1,6] naphthyridine-2,4,‌6, 8(1H,3H,7H,9H)-tetraones with amino acid moiety (DHPN) was synthesized and characterized by 1H, 13C Nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy experiments. DHPN was investigated for the first time as a green inhibitor of mild steel (A105) corrosion in acidic (0.1, 0.5 mol L-1 H2SO4 and HCl) solutions using potentiodynamic polarization (PDP) technique. The inhibition concentration used range from of 1.86-17.16 mg L-1. The results showed that, the inhibition efficiency increased with an increased in the concentration of DHPN and, reached a maximum value of 78% at 5.15 mg L-1. This can be explained by strong adsorption of inhibitor molecules on the metal surface, which blocks more corrosion active sites. The polarization curves demonstrated that, this compound act as a mixed type inhibitor and, do not modify the reaction mechanism of the corrosion process. The adsorption of the DHPN molecule on the surface of mild steel was found to obey the Langmuir adsorption isotherm.

Graphical Abstract

Experimental and Theoretical Studies of One Dihydropyridine Derivative as Corrosion Inhibitor in Acidic Media (H2SO4,, HCl)

Keywords


  1. B. V. Salas, M. Schorr, R. Zlatev, M. Carrillo, M. Stoytcheva, L. Alvarez, N. Rosas, Environmental and industrial corrosion, Croatia, 2012.
  2. H. Elmsellem, T. Harit, A. Aouniti, et al. Prot. Met. Phys. Chem. 51, 873 (2015).
  3. H. Elmsellem, Y. El Ouadi, M. Mokhtari, et al. J. Chem. Technol. Metall. 54, 742 (2019).
  4. S. A. Umoren, M. M. Solomon, J. Environ. Chem. Eng. 5 (1), 246 (2017).
  5. D. Q. Huong, T. Duong, P.C. Nam, J. Mol. Model. 25, 204 (2019).
  6. S. O. Ajeigbe, N. Basar, H. Maarof, A. M. Al-Fakih, M. A. Hassan, Aziz, J. Mater. Environ. Sci. 8, 2040 (2017)
  7. S. Malinowski, J. J. Wolińska, T. Herbert, J. Mol. Model. 24, 1 (2018).
  8. I. B. Obot, S. Kaya, C. Kaya, B. Tüzün, Physica E Low Dimens. Syst. Nanostruct. 80, 82 (2016).
  9. I. B. Obot, S. Kaya, C. Kaya, B. Tüzün, Res. Chem. Intermed. 42, 4963 (2016).
  10. H. I. Taleb, A. Z. Mohamed, Int. J. Electrochem. Sci. 6, 6442 (2011).
  11. M. Bethencourt, F. J. Botana, J. J. Calvino, M. Marcosm, Corros. Sci. 40, 1803 (1998).
  12. M. A. Arenas, A. Conde, J. J. De Damborenea, Corros. Sci. 44, 511 (2002).
  13. S. M. El-Sawy, Y. M. Abu-Ayana, et al. Anticorros. Methods Mater. 48, 227 (2001).
  14. P. B. Raja, M. G. Sethuraman, Mater. Lett. 62, 113 (2008).