Theoretical investigation of the kinetics and reaction mechanism between triphenylphosphine and dimethyl acetylenedicarboxylate in the presence of 1-aminoanthraquinone as NH-acid

Document Type : Original Article

Authors

1 َAssictant Professor Department of Chemistry, Payame Noor University, Tehran, Iran.

2 هیئت علمی

3 Associate Professor-Physical Chemistry Department of Chemical Engineering, Sirjan University of Technology

10.22036/cr.2021.292513.1150

Abstract

In this study, the reaction mechanism between dimethyl acetylene, dicarboxylate and triphenylphosphine in the presence of 1-aminoanthraquinone as NH-acid was examined theoretically using the method B3lyp / 6-311++G(d, p):HF/6-31G. According to the theoretical results, a logical mechanism for the reaction was proposed and the most desirable reaction path for the product was predicted. In the present work, the reaction between a kinetic study, including determining the preferred kinetic path, investigation of intermediate structures and transition states in the reaction path, determination of the kinetic and thermodynamic stability of products, recognition of rate-determining step, calculation of the reaction rate, and finally, identifying and confirming the reaction mechanism are the issues that have been first explored for this reaction. To check the effect of solvent on the potential energy surfaces, condensed phase calculations in dichloroethane were carried out with the polarizable continuum model (PCM). Finally, in order to better understand molecular interactions, the natural graft orbital method (NBO) was used.

Graphical Abstract

Theoretical investigation of the kinetics and reaction mechanism between triphenylphosphine and dimethyl acetylenedicarboxylate in the presence of 1-aminoanthraquinone as NH-acid

Keywords


  1. A. K. Corbridge, W. A. Goddard III, J. Phys. Chem. 95, 3358 (1995).
  2. S.Contorno, R. E.Darienzo, R. Tannenbaum, Scientific Reports. 11,1698 (2021).
  3. P. L. A. Rostami, Atoms in molecules. An introduction, Prentice, Pearson Education. Essex. England. 2011.

[4] 4. A. Ramazani, N. Shajari, A .Tofangchi Mahyari, M Khoobi, Y. Ahmadi, A. Souldozi, Phosphorus Sulfur Silicon Relat. Elem. 185, 2496 (2010).

  1. H. S. Kalantari, R. Graham, J. Chem. 52, 1415 (2006).
  2. S. M. Habibi Khorassani, M. T. Maghsoodlou, A. Ebrahimi, H. Roohi, M. Zakarianezhad, M. Moradian, Progress in Reaction Kinetics and Mechanism. 30, 127 (2005)
  3. M. Feyzi, L. Nourozi, M. Zakarianezhad, Materials Research Bulletin. 60, 412 (2014).
  4. H. R. Masoodi, S. Bagheri, M. Mohammadi, M. Zakarianezhad, B. Makiabadi, Chemical Physics Letters. 588, 31 (2013).
  5. M. Zakarianejad, H. Ghasempour, S. M. Habibi-Khorassani, M. T. Maghsoodlou, B. Makiabadi,M. Nassiri, Z. Ghahghayi, A. Abedi, Arkivoc. 2013, 171 (2013).
  6. H. Roohi, B. Mackiabadi, Bulletin of the Chemical Society of Japan. 80, 1914 (2007).
  7. B. Makiabadi, H. Kian, Monatshefte fur Chemie. 146, 69 (2015).
  8. M. Zakarianezhad, S. M. Habibi-Khorassani, M. T. Maghsoodlou, B. Makiabadi, Oriental Journal of Chemistry. 28, 1259 (2012).
  9. H. R. Masoodi, M. Zakarianezhad, S. Bagheri, B. Makiabadi, M. Shool, Chemical Physics Letters. 614, 143 (2014).
  10. S. M. H. Khorassani, M. T. Maghsoodlou, H. Ghasempour, M. Zakarianezhad, M. Nassiri, Z.Ghahghaie, Journal of Chemical Sciences. 125, 387 (2013).
  11. M. Zakarianezhad, B. Makiabadi, S. M. Habibi-Khorassani, M. Shool, M. Eslamlou, Researchon Chemical Intermediates. 44, 2653 (2018).
  12. S. M. Habibi-Khorassani, B. Adrom, Z. Gharechahi, M. T. Maghsoodlou, R. Heydari, M. Ghahramaninezhad, R. Kabiri, G. Marandi, Phosphorus, Sulfur, and Silicon, 185, 1395 (2010).
  13. M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision A. 02, Gaussian. Inc, Wallingford, CT, 2009.
  14. A. M.Verma, N. Kishore, ChemistrySelect. 2, 1556 (2017).
  15. C. Gonzalez, H. B. Schlegel, J Phys Chem. 94, 5523 (1990).
  16. C. Gonzalez, H. B. Schlegel, J Chem Phys. 90, 2154 (1989).
  17. K. M. Al-Ahmary, M. M. Habeeb, S. H. Aljahdali, Journal of Molecular Liquids, 277, 453 (2019).
  18. E. Cances, B. Mennucci, J. Tomasi, J Chem Phys. 107, 3032 (1997).
  19. M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem Phys Lett. 255, 327 (1996).
  20. D. E. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO, Version 3.1.
  21. F. Biegler-Knig, J. Schnbohm, D. Bayles, J Comput Chem. 22, 545 (2001).
  22. H. Ghasempour, M. Zakarianezhad, B. Makiabadi, S. M. Habibi-Khorassani Iranian Journal of Science and Technology, Transaction A: Science. 40, 255 (2016).
  23. M. Zakarianezhad, B. Makiabadi, S. S. Hosseini, Theoretical Chemistry Accounts. 140, 214 (2021).
  24. S. M. Habibi Khorassani, M. T Maghsoodlou, A. Ebrahimi, H. Roohi, M. Zakarianezhad, H. R. Dasmeh, M.Moradian, Phosphorus, Sulfur and Silicon and the Related Elements. 181, 1103 (2006).
  25. M. Zakarianezhad, B. Makiabadi, M. Shool, Journal of the Chilean Chemical Society. 61, 2929 (2016).
  26. M. Zakarianezhad, B. Makiabadi, P. Sotoodeh, E. Zeydabadi, Phosphorus, Sulfur and Silicon and the Related Elements. 28, 656 (2021).
  27. M. Zakarianezhad, S. M. Habibi-Khorassani, M. T. Maghsoodlou, B. Makiabadi, H. Ghasempour, Iranian Journal of Science and Technology, Transaction A: Science. 36, 251 (2012).
  28. K. A. Conors, Chemical Kinetics–The Study of Reaction Rate in Solution, Wiley, New York, 1990.
  29. D. G. Truhlar, B. C. Garrett, S. J. Klippenstein, J. Phys. Chem. 100, 12771 (1996).