Investigation and comparison of the performance of doped carbon nanotubes in adsorption and delivery of the anticancer drug Lomustine

Document Type : Original Article

Authors

1 Assistant Professor of Physical Chemistry, Department of Chemistry, Payame Noor University

2 Associate Professor-Physical Chemistry Department of Chemical Engineering, Sirjan University of Technology

3 هیئت علمی

4 Department of Chemistry, Payame Noo

10.22036/cr.2021.304856.1158

Abstract

By developing nanotechnology, nanocarriers, for example, carbon nanotubes (SWCNTs), can be used as a suitable tool for targeted drug delivery. In this study, the physical chemistry properties of the interaction of the anti-cancer drug Lomustine with carbon nanotube (5,0) zigzag doped with iron or chromium atoms have been investigated. In the first step, the adsorption features, which is a key factor in the drug delivery system, has investigated to measure the efficiency of carbon nanotubes (5,0). In this regard, the density functional theory (DFT) method has used and the calculations have performed at the B3LYP/6-311G (d, p) theoretical level. To achieve the desired aim in this study, structural parameters such as adsorption energy, dipole moment, density of state plots, energy gap and the energies of molecular orbitals have calculated and studied. The results have shown that the orbital energy level was significantly decreased by adsorption of the drug on nanotubes doped with iron or chromium atoms. Other properties of this interaction such as chemical potential, chemical hardness and softness, and electrophilicity, also change significantly.

Graphical Abstract

Investigation and comparison of the performance of doped carbon nanotubes in adsorption and delivery of the anticancer drug Lomustine

Keywords


  1. J. H Braybrook, Biocompatibility Assessment of Medical Devices and Materials. JohnWiley &sons. USA. 1997.
  2. H. Xu, L. Li, G. Fan, X. Chu, Computational and Theoretical Chemistry. 1131, 57 (2018).
  3. R. Chadar, O. Afzal, S. M. Alqahtani, P. Kesharwani, Colloids and Surfaces B: Biointerfaces. 208, 112044 (2021).
  4. H. Mehralitabar, A. S Ghasemi, J. Gholizadeh, Steroids. 167, 108799 (2021).
  5. S. S. Begum, D. Das, N. K. Gour, R. C. Deka, Scientific Reports. 11, 4950 (2021).
  6. M. Deilam, A. S. Ghasemi, F. Ashrafi, Iranian Chemical Communication. 7, 628 (2019).
  7. A. Mortazavifar, H. Raissi, M. Shahabi, Journal of Biomolecular Structure and Dynamics. 37,4852 (2019).
  8. A. S. Ghasemi, Z. Babai Afrapol, Afrapol Exp. Animal Bio. 9, 113 (2020).
  9. S. Daneshmehr, Procedia Materials Sci. 11, 131 (2015).
  10. G. N. Yushin, K. L. Evanoff, U.S. Patent. 9,165 (2016).
  11. H. Tahermansouri, A. Mirosanloo, S. H. Keshel, M. Gardaneh, Carbon let.17, 45 (2016).
  12. N. Saikia, R. C. Deka, Comp. and Theore. Chem. 964, 257 (2011).
  13. D. Balram, K. Y. Lian, N. Sebastian, N. Rasana, Applied Surface Science. 559, 149981 (2021).
  14. W. Li, N. Chi, E. D. Clutter, B. Zhu, R. R. Wang, Journal of Composites Science, 5, 148 (2021).
  15. J. Yin, AIChE J. 53, 2202 (2007).
  16. F. Balavoine, P. Schultz, G. Richard, V. Mallouh, T. W. Ebbesen, C. Mioskowski, Chemie. Intl. Edn. 38, 1912 (1999).
  17. M.Heidarian, A. Khazaei, J. Saien, Physical Chemistry Research. 9, 57 (2021).
  18. N. M. Mahani, Physical Chemistry Research. 9, 99 (2021).
  19. Y. Temerk, M. Ibrahim, H.Ibrahim, M. Kotb, Elec. Chem. 769, 62 (2016).
  20. B. Makiabadi, M. Zakarianezhad, M. S. Ekrami-Kakhki, Sh. Zareye, Phosphorus, Sulfur, and Silicon and the Related Elements. 194, 57 (2019).
  21. B. Makiabadi, M. Zakarianezhad, Chemical Methodologies 4, 191 (2020).
  22. N. Saikia, S. Rajkhowa, R. C. Deka, compu. Aid. mol. des. 27, 257 (2013).
  23. N. Saikia, R. C Deka, Chem. Phys. Let. 500, 65 (2010).
  24. B. Makiabadi, M. Zakarianezhad, S. S. Hosseini, Structural Chemistry, 32, 1019 (2021).
  25. S. Agarwal, D. K. Jangir, P. Singh, R. Mehrotra, J Photochem Photobiol B. 130, 281 (2014)
  26. H. Fisli, N. Bensouilah, N. Dhaoui, M. Abdaoui, J Incl Phenom Macrocycl Chem. 73, 369 (2012).
  27. A. Anand, B. R. Iyer, C. Ponnusamy, R. Pandiyan, A. Sugumaran, Cardiovasc Hematol Agents Med Chem. 18, 45 (2020).
  28. M. Cao, D. Wu, M. Yoosefian, S. Sabaei, M. Jahani, J. Mol. Liq. 320, 114285 (2020)
  29. E. Golipour‑Chobar, F. Salimi, Gh. Ebrahimzadeh Rajaei, Monatsh. Chem. 151, 309 (2020)
  30. M. Frisch, G. Trucks, H. B.Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision A. 02. Gaussian. Inc, Wallingford, (2009)
  31. D. Peer, S.Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nanotech. 2, 751 (2007).
  32. M. K. Hazrati, N. L. Hadipour, Phys. Lett. A. 380, 937 (2016).
  33. A. S. Ghasemi, A. Soltani, M. Karimnia, F. Ashrafi, F. Heidari, M. Majidian, Mol. Liq. 277, 115 (2019).
  34. R. G. Pearson, J. Am. Chem. Soc. 107, 6801 (1985).
  35. A. E. Reed, L. A. Curtiss, F. Weinhold. Chem Rev. 88, 899 (1988).
  36. I. Fleming, Frontier Orbitals, Organic Chemical Reactions. John. Wiley and Sons. New York. 1976.
  37. A. D. Back, K. E. Adgecombe, Chem. Phys. 92, 5397 (1990).
  38. A. Soltani, M. Bezi Javan, M. S. Hoseininezhad-Namin, N. Tajabor, E. Tazikeh Lemeski, F. Pourarian, Synth. Met. 234, 8 (2017).
  39. A. Soltani, M. Bezi Javan, M. T Baei, Z. Azmoodeh, Alloys Compd. 735, 2148 (2018).
  40. A. Soltani, M. Ramezani Taghartapeh, M. Bezi Javan, P. J Mahon, Z. Azmoodeh, E. Tazikeh Lemeski, I. V. Kityk, Phys. E. 97, 239 (2018).
  41. E. Duverger, T. Gharbi, E. Delabrousseb, F. Picaud, Phys. Chem. 16, 18425 (2014).
  42. A. S. Ghasemi, M. Ramezani Taghartapeh, A. Soltani, P. J. Mahon, J. Mol. Liquids. 272, 955 (2019).
  43. A. Soltani, A. S. Ghasemi, M. Bezi Javan, F. Ashrafi, Adsorp. 25, 235 (2019).