Deposition of WO3 nanoparticels onto TiO2-nanotubes/Ti plates for catalytic degradation of methylene blue in presence of hydrogen peroxide

Document Type : Original Article

Authors

1 Department of Physical Chemistry, Chemistry Faculty, Urmia University, Urmia, Iran.

2 Nano Research Laboratory, Urmia University, Urmia, Iran

Abstract

WO3-NPs/TiO2NTs/Ti plates with high surface area and good catalytic characteristics were fabricated by electrochemical loading of WO3 nanoparticels onto the previously formed highly oriented TiO2 nanotubes/Ti plates. These plates were characterized by X-ray diffraction, electrochemical impedance spectroscopy, scanning electron microscopy and UV–visible spectroscopy. The morphological studies showed that the WO3 nanoparticels has been uniformly deposited onto the TiO2 nanotubes. The modified plates efficiently catalyzed the activation of H2O2 to generate hydroxyl radicals, causing the fast degradation of methylene blue (MB) at room temperature. Almost complete oxidative degradation of MB was obtained after 60 min in presence of H2O2 as a green oxidant. The high activity of the WO3-NPs/TiO2-nanotube/Ti plate was attributed to excellent mesoporous properties of the TiO2-nanotube/Ti plate as substrate and nano size of the WO3 with more surface sites exposed for dye degradation reaction. Furthermore, the WO3-NPs/TiO2-NTs/Ti plates are reasonably stable and could be recycled for several runs.

Graphical Abstract

Deposition of WO3 nanoparticels  onto TiO2-nanotubes/Ti plates for catalytic degradation of methylene blue in presence of hydrogen peroxide

Keywords

Main Subjects


1) A. Xu, X. Li, S. Ye, G. Yin, Q. Zeng, Appl. Catal. B: Environ. 102 (2011) 37.
2) A. Rashidzadeh, A. Olad, D. Salari, Fibers and Polym. 16 (2015) 354.
3) S. Caudo, G. Centi, C. Genovese, S. Perathoner, Topics in Catal. 40 (2006) 207.
4) M. Amini, B. Pourbadiei, T.P.A. Ruberu, L.K. Woo, New J. Chem. 38 (2014) 1250.
5) W. Qing, K. Chen, Y. Wang, X .Liu, M. Lu, Appl. Surface Sci. 423 (2017) 1019.
6) C. Ramakrishna, S. Chandra Shekar, A.K. Gupta, B. Saini, R. Krishna, G. Swetha, T. Gopi, J. Environ. Chem. Engin. 5 (2017) 1484.
7) L. Xu, X. Li, J. Ma, Y. Wen, W. Liu, Appl. Catal. A: Gen. 485 (2014) 91.
8) M. Kurian, D.S. Nair, J. Chem. Sci. 127 (2015) 537.
9) P. Baldrian, V. Merhautova, J. Gabriel, F. Nerud, P. Stopka, M. Hruby, M.J. Benes, Appl. Catal. B: Environ. 66 (20060258).
10) F. Deng, Y. Liu, X. Luo, D. Chen, S. Wu, S. Luo Separation and Purification Technol. 120 (2013) 156.
11) M. Faraji, M. Amini, A.P. Anbari, Catal. Commun. 76 (20160 72.
12) Y.O. Kim, S.H. Yu, K.S. Ahn, S.K. Lee, S.H. Kang, J. Electroanal. Chem. 752 (2015) 25.
13) F. Gobal, M. Faraji, Electrochim. Acta 100 (2013) 133.
14) K.S. Ahn, S.H. Lee, A.C. Dillon, C.E. Tracy, R. Pitts, J. Appl. Phys. 101 (2007) 093524.
15) H. Habazaki, Y. Hayashi, H. Konno, Electrochim. Acta 47 (2002) 4181.