ZnS-ZnFe2O4: Magnetic nanocatalyst for efficient synthesis of tetrasubstituted benzimidazoles

Document Type : Original Article

Authors

1 Associate Professor, Department of Chemistry, Iran University of Science and Technology Tehran, Iran

2 PhD Student, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran

3 M.Sc. Student, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran

Abstract

Catalysts in chemical reactions improve the reaction conditions, increase the speed and yield of the products. So, they play a prominent role in various industries such as the chemical industry, petroleum industry, and pharmaceutical chemistry. In this work, an efficient and co-friendly method for the synthesis of 1,2,4,5-tetrasubstituted imidazoles via a four-component condensation of benzil, aldehydes, primary amines and ammonium acetate in the presence of a magnetic nanocatalyst, ZnS-ZnFe2O4, in ethanol under refluxing conditions is presented. Magnetic ZnS-ZnFe2O4 was prepared via a simple method and characterized by energy-dispersive X-ray analysis (EDAX), field-emission scanning electron microscopy (FESEM), X-Ray diffraction pattern (XRD) and vibrating sample magnetometer (VSM). This protocol has advantages such as high yields of the products, use of a green solvent, simple and chromatography-free work-up procedure. Most importantly, the catalyst can be conveniently recovered from the reaction mixture by using external magnet and reused for at least three times without significant decrease in catalytic activity.

Graphical Abstract

ZnS-ZnFe2O4: Magnetic nanocatalyst for efficient synthesis of tetrasubstituted benzimidazoles

Keywords

Main Subjects


1) A. Domling, W. Wang, K. Wang, Chem. Rev., 112, 3083 (2008).
2) M. Benaglia, Recoverable and Recyclable Catalysts, John Wiley & Sons. 2009.
3) S. Wittmann, A. Schätz, R.N. Grass, W.J. Stark, O. Reiser, Angew. Chem. Int. Ed., 49, 1867-1870 (2010).
4) A. Maleki, R. Paydara, RSC Adv., 5, 33177-33184 (2015).
5) G.A. Somorjai, H. Frei, J.Y. Park, J. Am. Chem. Soc., 131, 16589–16605 (2009).
6) N. Erfaninia, R. Tayebee, E.L. Foletto, M.M. Amini, M. Dusek, F.M. Zonoz, Appl. Organomet. Chem., 32, 4047 (2017).
7) A.M. Gama, M.C. Rezende, Mater. Res., 16, 997-1001 (2013).
8) A. Teimouri, A.N. Chermahini, J. Mol. Catal. A: Chem., 346, 39-45 (2011).
9) H. Aghahosseini, A. Ramazani, K. Ĺšlepokura, T. Lis, J. Colloid Interface Sci. 511, 222-232 (2018).
10) A.R. Moosavi-Zare, Z. Asgari, A. Zare, M.A. Zolfigol, M. Shekouhy, RSC Adv., 4, 60636-60639 (2014).
11) S. Kantevari, S.V.N. Vuppalapati, D.O. Biradar, L. Nagarapu, J. Mol. Catal. A: Chem., 266, 109–113 (2007).
12) A.V. Borhade, D.R. Tope, S.G. Git, Arab. J. Chem., 10, S559-S567 (2017).
13) M. Esmaeilpour, J. Javidi, F. Dehghani, S. Zahmatkesh, Res. Chem. Intermed., 43, 163–185 (2017).
14) J.J. Gabla, S.R. Mistry, K.C. Maheria, Catal. Sci. Technol., 7, 5154-5167 (2017).
15) X.C. Wang, H.P. Gong, Z.J. Quan, L. Li, H.L. Ye, Chin. Chem. Lett., 20, 44–47 (2009).
16) B.F. Mirjalili, A.H. Bamoniri, L. Zamani, Sci. Iran., 19, 565–568 (2011).
17) M.M. Heravi, F. Derikvand, F.F. Bamoharram, J. Mol. Catal. A: Chem., 263, 112–114 (2007).
18) B. Sadeghi, B.F. Mirjalili, M. M.Hashemi, Tetrahedron Lett., 49, 2575-2577 (2008).
19) M. Salimi, M.A. Nasseri, T.D. Chapesshloo, B. Zakerinasab, RSC Adv., 5, 33974 (2015).