بررسی جذب و تفکیک مولکول‌های آب برروی گرافن آلاییده شده با بور وآلومینیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی فیزیک، دانشکده شیمی، دانشگاه دامغان، دامغان، ایران

10.22036/cr.2020.197592.1086

چکیده

در این کار پژوهشی از گرافن آلاییده شده با آلومینیوم و بور به عنوان یک جاذب و کاتالیزور برای تفکیک مولکول‌های آب و تولید هیدروژن استفاده شده است. مطالعات بر اساس تئوری تابعیت چگالی، روش 6-311G/ m062xو با استفاده از نرم افزار گاوسین 09 انجام شده است. برهمکنش دو مولکول آب به ترتیب بر روی نانوصفحه‌های مذکور مورد بررسی قرار گرفت. برای این منظور، مسیر واکنش تفکیک تنها مولکول آب جذب شده به صورت خودبخودی بر روی آلومینیوم نانوصفحات آلاییده شده، مورد مطالعه قرار گرفت. سطوح انرژی پتانسیل مربوط به مولکول آب و نانوصفحه‌های مذکور نیز در این راستا مورد بررسی قرار گرفت. برای هر دو نانوصفحه فرآیند جذب مولکول آب، خودبخودی و از نوع شیمیایی بود. فرآیند تفکیک آب در دو مرحله با شکستن دو پیوند هیدروژن- اکسیژن مولکول آب انجام شد. تغییرات آنتالپی، انرژی فعالسازی و تغییرات انرژی آزاد گیبس برای مسیر واکنش تفکیک مولکول آب محاسبه گردید. نتایج نشان دادند که تعداد و موقعیت اتم‌های بور تاثیر غیر مستقیم بر میزان خودبخودی بودن فرآیند جذب و تفکیک مولکول آب دارند.

چکیده تصویری

بررسی جذب و تفکیک مولکول‌های آب برروی گرافن آلاییده شده با بور وآلومینیوم

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of adsorption and decomposition of water molecules on Al & B doped graphene

نویسندگان [English]

  • Milad Ghanbari
  • Sadegh Afshari
  • S. Ahmad Nabavi Amri
School of Chemistry, Damghan University, Damghan, Iran
چکیده [English]

In this study, aluminum and boron doped graphene has been used as adsorbent and catalyst to decompose water molecules in order to hydrogen production. The study has been done by density function theory and m062x/6-311G method using Gaussian 09 package. The interaction of two water molecules on mentioned nano sheets have been investigated, respectively. In order, the reaction pathway of the only spontaneous adsorbed water molecule decomposition has been studied. Also, the potential energy surfaces of water molecule and mentioned nano sheets have been surveyed. The water molecule adsorption was chemically and spontaneously for both nano sheets. The decomposition process of water molecule has been done in two steps by dissociation of two oxygen-hydrogen bond. The change of enthalpy, activation energy and change of Gibbs free energy for pathway of water decomposition has been calculated. The results shown that the number and position of boron atoms effect on the spontaneity of adsorption and decomposition process for water molecule, indirectly.

کلیدواژه‌ها [English]

  • Graphene
  • Nano catalyst
  • Hydrogen production
  • water
  • Density Functional Theory
1 M. Myint, Y. Yan, J.G. Chen, Reaction Pathways of Propanal and 1-Propanol on Fe/Ni(111) and Cu/Ni(111) Bimetallic Surfaces, The Journal of Physical Chemistry C, 118 (2014) 11340.
2) A. Mukherji, B. Seger, G.Q. Lu, L. Wang, Nitrogen Doped Sr2Ta2O7 Coupled with Graphene Sheets as Photocatalysts for Increased Photocatalytic Hydrogen Production, ACS Nano, 5 (2011) 3483.
3) Y. Ge, Z.H. Shah, X.-J. Lin, R. Lu, Z. Liao, S. Zhang, Highly Efficient Pt Decorated CoCu Bimetallic Nanoparticles Protected in Silica for Hydrogen Production from Ammonia–Borane, ACS Sustainable Chemistry & Engineering, 5 (2017) 1675.
4) C.T. Vo, L.K. Huynh, J.Y. Hung, J.-C. Jiang, Methanol adsorption and decomposition on ZnO(101¯0) surface: A density functional theory study, Applied Surface Science, 280 (2013) 219.
5) M.D. Esrafili, R. Nurazar, A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage, Superlattices and Microstructures, 67 (2014) 54.
6) Z. Wang, X. Yang, T. Yang, Y. Zhao, F. Wang, Y. Chen, J.H. Zeng, C. Yan, F. Huang, J.-X. Jiang, Dibenzothiophene Dioxide Based Conjugated Microporous Polymers for Visible-Light-Driven Hydrogen Production, ACS Catalysis, 8 (2018) 8590.
7) L. Wang, M.Z. Ertem, R. Kanega, K. Murata, D.J. Szalda, J.T. Muckerman, E. Fujita, Y. Himeda, Additive-Free Ruthenium-Catalyzed Hydrogen Production from Aqueous Formaldehyde with High Efficiency and Selectivity, ACS Catalysis, 8 (2018) 8600.
8) R. Bhosale, S. Kelkar, G. Parte, R. Fernandes, D. Kothari, S. Ogale, NiS1.97: A New Efficient Water Oxidation Catalyst for Photoelectrochemical Hydrogen Generation, ACS Applied Materials & Interfaces, 7 (2015) 20053.
9) Y. Sun, C. Liu, D.C. Grauer, J. Yano, J.R. Long, P. Yang, C.J. Chang, Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water, Journal of the American Chemical Society, 135 (2013) 17699.
10) M. Jacoby, HYDROGEN FROM SUN AND WATER, Chemical & Engineering News Archive, 87 (2009) 7.
11) S. Fang, Z. Sun, Y.H. Hu, Insights into the Thermo-Photo Catalytic Production of Hydrogen from Water on a Low-Cost NiOx-Loaded TiO2 Catalyst, ACS Catalysis, 9 (2019) 5047.
12) M.Y. Zu, P.F. Liu, C. Wang, Y. Wang, L.R. Zheng, B. Zhang, H. Zhao, H.G. Yang, Bimetallic Carbide as a Stable Hydrogen Evolution Catalyst in Harsh Acidic Water, ACS Energy Letters, 3 (2018) 78.
13) Z. Jiang, M. Li, T. Yan, T. Fang,Decomposition of H2O on clean and oxygen-covered Au (1 0 0) surface: A DFT study, Applied Surface Science, 315 (2014) 16.
14) R. P. Ren, Y. C. Zhang, S. Liu, Z. J. Zuo, Y. K. Lv,DFT studies of the methanol decomposition mechanism on the H2O/Cu(110) and OH pre-adsorbed H2O/Cu(110) interfaces: Comparison with the clean Cu(110) surface, International Journal of Hydrogen Energy, 41 (2016) 2411.
15) F. F. Ma, S. H. Ma, Z. Y. Jiao, X. Q. Dai,Adsorption and decomposition of H2O on cobalt surfaces: A DFT study, Applied Surface Science, 384 (2016) 10.
16) M. Jacoby, Single-atom catalyst drives key water-splitting step, C&EN Global Enterprise, 96 (2018) 8.
17) Y. Li, L.A. Zhang, Y. Qin, F. Chu, Y. Kong, Y. Tao, Y. Li, Y. Bu, D. Ding, M. Liu, Crystallinity Dependence of Ruthenium Nanocatalyst toward Hydrogen Evolution Reaction, ACS Catalysis, 8 (2018) 5714.
18) S. Osuna, M. Torrent-Sucarrat, M. Solà, P. Geerlings, C.P. Ewels, G.V. Lier, Reaction Mechanisms for Graphene and Carbon Nanotube Fluorination, The Journal of Physical Chemistry C, 114 (2010) 3340.
19) W. Xiong, F. Du, Y. Liu, A. Perez, M. Supp, T.S. Ramakrishnan, L. Dai, L. Jiang, 3-D Carbon Nanotube Structures Used as High Performance Catalyst for Oxygen Reduction Reaction, Journal of the American Chemical Society, 132 (2010) 15839.
20) S. Sh. Vedaei, E. Nadimi, Gas sensing properties of CNT-BNNT-CNT nanostructures: A first principles study, Applied Surface Science, 470 (2019) 933.
21) G. Woo, K. G. Kim, Behavior of H2O molecule in carbon nanotube/boron nitride nanotube heterostructure, Current Applied Physics, 19 (2019) 675.
22) T.-L. Wu, C.-H. Yeh, W.-T. Hsiao, P.-Y. Huang, M.-J. Huang, Y.-H. Chiang, C.-H. Cheng, R.-S. Liu, P.-W. Chiu, High-Performance Organic Light-Emitting Diode with Substitutionally Boron-Doped Graphene Anode, ACS Applied Materials & Interfaces, 9 (2017) 14998.
23) Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing, ACS Nano, 4 (2010) 1790.
24) D.Y. Usachov, A.V. Fedorov, O.Y. Vilkov, A.E. Petukhov, A.G. Rybkin, A. Ernst, M.M. Otrokov, E.V. Chulkov, I.I. Ogorodnikov, M.V. Kuznetsov, L.V. Yashina, E.Y. Kataev, A.V. Erofeevskaya, V.Y. Voroshnin, V.K. Adamchuk, C. Laubschat, D.V. Vyalikh, Large-Scale Sublattice Asymmetry in Pure and Boron-Doped Graphene, Nano Letters, 16 (2016) 4535.
25) I. Maity, K. Ghosh, H. Rahaman and P. Bhattacharyya, Selectivity Tuning of Graphene Oxide Based Reliable Gas Sensor Devices by Tailoring the Oxygen Functional Groups: A DFT Study Based Approach, IEEE Transactions on Device and Materials Reliability, 17 (2017) 738.
26) M. D. Esrafili, R. Nurazar, E. Vessally, Application of Si‐doped graphene as a metal‐free catalyst for decomposition of formic acid: A theoretical study, Internatinal Journal of Quantum Chemistry, 115 (2015) 1153.
27) M. Samadizadeh, A. P. Ahmadi, S. F.Rastegar, Sensing behavior of BN nanosheet toward nitrous oxide: A DFT study, Chinese Chemical Letters, 26 (2015) 1042.
26) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09. Gaussian, Inc., Wallingford, CT, USA, 2009.
27) L. Clarizia, D. Russo, I. D. Somma, R. Andreozzi, R. Marotta, Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials, Energies, 10 (2017) 1624.