بررسی جذب مولکول کربن منوکسید بر سطح Cu(111) با استفاده از نظریه تابعی چگالی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه شیمی، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه، ایران

10.22036/cr.2020.204989.1093

چکیده

در این پژوهش، جذب مولکول CO بر روی سطح Cu() به کمک نظریه تابعی چگالی،DFT ، با به کارگیری تقریب گرادیان تعمیم یافته، GGA ، و استفاده از تقریبب شبه پتانسیل برای الکترون های داخلی و سری مبنای امواج تخت برای توصیف اربیتال های کوهن شم ،مورد مطالعه قرار گرفت. برای شبیه سازی سطح با مدل بُره ای متناوب ، از بُره هایی متشکل از چهار سلول واحد سطح و پنج لایه اتمی استفاده شد. چهار جایگاه مختلف روی سطح شامل فراز ، پل ، حفره hcp و حفره fcc برای جذب مولکول CO روی سطح Cu(111) در نظرگرفته شد. انرژی جذب ،طول پیوند و فرکانس ارتعاشی مولکول CO در جایگاه های مختلف محاسبه و با یکدیگر و مقادیر تجربی مقایسه گردید. همچنین تصویر چگالی حالت ها و جمعیت الکترونی اتم ها برای جذب در جایگاه های مختلف، مورد بررسی قرار گرفت. از میان جایگاههای مختلف مورد بررسی، جذبCO درجایگاه حفره fcc از نظر انرژی مطلوب تر می باشد.

چکیده تصویری

بررسی جذب مولکول کربن منوکسید بر سطح Cu(111) با استفاده از نظریه تابعی چگالی

کلیدواژه‌ها


عنوان مقاله [English]

Density functional theory study of the CO adsorption on Cu(111) surface

نویسنده [English]

  • Fereydoon Khazali
department of chemistry, Omidiyeh Branch, Islamic Azad University
چکیده [English]

In this research to investigate the adsorption of CO molecule on the Cu(111) surface , plane wave pseudo potential density functional theory calculations were performed using the generalized gradient approximation (GGA). Nuclei and core electrons were described by ultra soft pseudo potential and the Kohn Sham orbitals were expanded in a plane wave basis set with a kinetic energy cut off of 50 Ry. The surface was modeled using periodic slabs consisting of five atomic layers and four surface unit cells. The adsorption of CO molecule into four different sites ( atop , bridge , hcp hollow , and fcc hollow) on the Cu(111) surface were examined. The adsorption energy, bond length and vibrational frequency of CO molecule at different sites ,the projected density of states, and electron population were calculated and compared. Among different considered sites, the dsorption of CO molecule in the fcc hollow site was favored energetically.

کلیدواژه‌ها [English]

  • CO adsorption
  • Cu(111) surface
  • density functional theory
  • GGA
  • Slab method
1)            r. raval, s. f. parker, m. e. pemble, p. hollins, j. pritchard, and m. a. chester, surface science,203  353, (1988).
2)            s. vollmer, j. witte, and l. wo, catalysis letter, 77,   97, (2001).
3)            C. J. Hirschmugl, G. P. Williams, F. M. Hoffmann, and Y. J. Chabal, physical review letter, 65,  480, (1990).
4)            J. C. Tracy, journal of chemical physic,   56, 2748, (1972).
5)            H. Over, progress in surface science, 58, 249, (1998).
6)            M. Scheffler, l. C. Stampf, and M. Scheffler, Handbook of Surface Science , Elsevier, Amsterdam, 1999.
7)            M. Gajdos, A. Eichler, and J. Hafner, journal of physics: condencs matter,   16,   1141, (2004).
8)            M. Gajdos and J. Hafner, surface science, 590, 117, (2005).
9)            S. E. Mason, I. Grinberg, and A. M. Rappe, physical review B, 69, 1614, (2004).
10)          P. J. Feibelman, B. Hammer, J. K. Norskov, F. Wagner, M. Scheffler, R. Stumpf, et al., journal of physical chemistry , 105, 4018, (2001).
11)          R. A. Olsen, P. H. T. Philipsen, and E. J. Baerends, iournal of chemical physics,119, 4522,(2003).
12)          H. Orita, N. Itoh, and Y. Inada, chemical physics letter, 384, 271, (2004).
13)          K. Doll, surface science, 573, 464, (2004).
14)          I. Grinberg, Y. Yourdshahyan, and R. A.M., journal of chemical physic,  117, 2264, (2002).
15)          A. Gil, A. Clotet, J. M. Ricart, K. G., M. Garcı´a-Herna´ndez, N. Rosch, et al., surface science, 530, 71, (2003).
16)          B. Hammer, Y. Morikawa, and J. K. Norskov, physical review letter, 76, 2141, (1996).
17)          J. Perdew, K. Burk, and M. Ernzerhof, physical review letter, 77, 3865,(1996).
18)          D. Vanderbilt, physical review B,41, 7892, (1990).
19)          M. Methfessel and A. T. Paxton, physical review B,40, 3616,(1989).
20)          P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J.Phys.:Condens.Matter 21, 395502 (2009).
21)          A. Kokalj, Comp. Mater. Sci., 28, 155 (2003).
               Available: http://www-k3.ijs.si/kokalj/xc/XcrySDen.html .
22)          H. J. Monkhorst and J. D. Pack, physical review B, 13, 5188, (1976).
23)          S. Narasimhan and S. de Gironcoli, physical review B, 65, 64302, (2002).
24)          P. H. T. Philipsen and E. J. Baerends, physical review B, 54, 5326, (1996).
25)          M. Neef and K. Doll, surface science, 600, 1082, (2006).
26)          C. M. Fehrenbach and H. Bross, physical review B, 48, 17703, (1993).
27)          K. A. Gschneidner, solid state physics, 16, 276,(1964).
28)          E. J. Moler, S. A. Keller, W. R. A. Huff, Z. Hussain, Y. Chen, and D. A. Shirley, physical review B,   45,  10862, (1996).
29)          C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy( 4 ed). McGraw-Hill , New York,2000.
30)          G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules. Van Nostrand Reinhold, New York, 1945.
31)          D. R. Linde (Ed.), Handbook of Chemistry and Physics(83rd ed). CRC Press LLC, Boca Raton, 2003.
32)          G. Blyholder, journal of physical chemistry, 68, 2772, (1964).