بررسی ویژگی‌های ترمودینامیکی و ساختاری کمپلکس های فلز Zn2+ با لیگاندهای باز شیف با استفاده از محاسبات شیمی کوانتومی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم، دانشگاه گیلان، رشت، ایران

10.22036/cr.2020.214599.1107

چکیده

در این کار مطالعه محاسباتی روی لیگاندهای مشتق شده از اورتو فنیلن دی آمین و سالیسیل آلدهید و کمپلکسهای حاصل از آن با کاتیون فلز روی با استفاده از سطوح محاسباتی B3LYP/6-311++G(d,p) و M06-2X/6-311++G(d,p) ارائه شده است. اثر استخلافهای مختلف بر خواص الکترونی و شیمی فیزیکی سیزده کمپلکس حاصل از ترکیب لیگاندهای مذکور با استخلافهای الکترون کشنده و الکترون دهنده مختلف (X: NO2, NH2, OCH3, H, F, Cl, Br, CN, OH, N(Me)2, CHO, CH3, CF3) و کاتیون روی بررسی شده است. در ادامه مقادیر انتقال بار، انرژی برهمکنش، آنتالپی تشکیل، انرژی آزاد گیبس تشکیل کمپلکس، پارامترهای ساختاری و خواص مکان شناسی کمپلکسهای مذکور پیش بینی گردیده است. نتایج نشان می‌دهند که قدرت برهمکنش بین لیگاندها و کاتیون روی با افزایش قدرت الکترون دهندگی استخلافها افزایش می‌یابد. از بین دو روش به کار رفته، B3LYP نتایج بهتری را نسبت به M06-2X نشان داد. با توجه به انرژی برهمکنش محاسبه شده ترتیب پایداری کمپلکسهای حاصل از برهمکنش لیگاندها با کاتیون روی به صورتLBrZn > LClZn > LFZn > LCHOZn > LCF3Zn > LCNZn> LNO2Zn LN(Me)2Zn > LNH2Zn > LOCH3Zn > LCH3Zn > LOHZn > LHZn > بدست آمد.

چکیده تصویری

بررسی ویژگی‌های ترمودینامیکی و ساختاری کمپلکس های فلز Zn2+ با لیگاندهای باز شیف با استفاده از محاسبات شیمی کوانتومی

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of structural and thermodynamical properties of schiff bases and zinc complexes using quantum chemical computations

نویسندگان [English]

  • Behzad Khalili
  • Alireza Khorshidi
  • Zahra Hajiaghaei
Department of chemistry, university of Guilan
چکیده [English]

This research represents a theoretical study on the ligands derived from O-phenylenediamine and salicylaldehyde and their complexes with Zn2+ using B3LYP/6-311++G(d,p) and M06-2X/6-311++G(d,p) computational levels. the effect of substituents on the electronic and physicochemical properties of the thirteen complexes obtained with various electron-donating and electron- withdrawing substituted schiff base ( X: NO2, NH2, OCH3, H, F, Cl, Br, CN, OH, N(Me)2, CHO, CH3, CF3) and Zinc cation was investigated. The amounts of the charge transfer, interaction energy, formation enthalpy, Gibbs free energy, structural parameters and geometric properties were perdicted. The result show that the interaction between Zn2+ and ligands increases with the increase of electron-donating nature of substituents on the para position of the phenolic ring of the ligands. Since B3LYP resulted in more accurate results in comparison with M06-2X, then the B3LYP method was applied to the next calculations (NBO, AIM). According to the calculated interaction energies, the order of stability of the complexes was found to be as follows: LN(Me)2Zn > LNH2Zn > LOCH3Zn > LCH3Zn > LOHZn > LHZn> LBrZn > LClZn > LFZn > LCHOZn > LCF3Zn > LCNZn> LNO2Zn.

کلیدواژه‌ها [English]

  • substituent effect
  • schiff base
  • zinc cation
  • complex
  • quantum chemical computation
  1. S. A. Abdel–Latif, H. B. Hassib, Y. M. Issa, Spectrochim. Acta: Part A, 67, 950 (2007)
  2. S. Meghdadi, M. Amirnasr, K. Mereiter, A. Amiri, V. Ghodsi, Inorg. Chim. Acta, 363, 1587 (2010)
  3. G. G. Mohamed, M. A. Zayed, S. M. Abdallah, J. Mol. Struct. 979, 62 (2010)
  4. S. Nayak, P. Gamez, B. Kozlevčar, A. Pevec, O. Roubeau, S. Dehnen, J. Reedijk, Polyhedron, 29, 2291 (2010)
  5. G. Bhargavi, M. V.Rajasekharan, J. P. Costes, J. P. Tuchagues, Polyhedron, 28, 1253 (2009)
  6. W. Li, Z. Li, L. Li, D. Liao, Z. Jiang, J. Solid State Chem. 180, 2973 (2007)
  7. G. G. Mohamed, M. M. Omar, A. A. Ibrahim, Spectrochim. Acta: Part A, 75, 678 (2010)
  8. B. Khalili, M. Rasoulian, K. Ghauri, J. Mol. Struct. 1201, 127171 (2020)
  9. http://3Koya.com
  10. S. Ghasemi, S. Mohammadnejad, M. R. Khalesi, Comput. Theor. Chem. 1124, 23 (2018)
  11. H. Noei–Hootkani, S. Karrari, H. Hosseini–Monfared, P. Mayer, B. Notash, J. Mol. Struct. 1143, 452 (2017)
  12. A. Üngördü, N. Tezer, J. Saudi Chem. Soc. 21, 837 (2017)
  13. B. Khalili, J. Mol. Model. 22, 11 (2016)
  14. B. Khalili, M. Rimaz, T. Tondro, J. Mol. Struct. 1080, 80 (2015)

.15 ن. اسدی، « مطالعه نظری تاثیر کاتالیزور باز شیف کمپلکس‌های مس(II) در اکسیداسیون اولفینها با استفاده از محاسبات مکانیک کوانتومی»، پایان نامه کارشناسی ارشد شیمی، تهران: دانشگاه الزهرا (1393)

.16  پ. جویبان قاضی جهانی، «مطالعه نظری کمپلکس‌های گازهای نجیب به کمک روش­های مکانیک کوانتومی»، پایان نامه کارشناسی ارشد شیمی، آذربایجان شرقی: دانشگاه مراغه (1393)

  1. M. Sheikhshoaie, T. Shamspur, S. Z. Zia Mohammadi, J. Chem. Pharm. Res. 4, 27 (2012)
  2. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, H. Nakatsuji, “Gaussian 09”, Revision B. 01 (2010)
  3. S. F. Boys, F. Bernardi, Mol. Phys. 19, 553 (2006)
  4. C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 91, 165 (1991)
  5. L. Rincón, R. Almeida, J. Phys. Chem. A, 116, 7523 (2012)
  6. R. Lü, Z. Qu, H. Yu, F. Wang, S. Wang, Comput. Theor. Chem. 988, 86 (2012)
  7. F. Richard, R. Bader, “Atoms in molecules: a quantum theory” (1990)
  8. I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc., 122, 11154 (2000)
  9. https://en.wikipedia.org/wiki/Band_gap
  10. N. Matsunaga, J. Comput. Theor. Nanos. 3, 957 (2006)
  11. S. S. Li, Semiconductor Physical Electronics, (2nd Ed.) Springer. New York. 2006.